大跨径、大悬臂矮塔斜拉桥桥面铺装技术研究
本文选题:TLA+SBS复合改性沥青 + 应力 ; 参考:《长安大学》2015年博士论文
【摘要】:大跨径、大悬臂矮塔斜拉桥悬臂板刚度相对较小,腹板和撑板刚度较大,其混凝土箱梁与钢箱梁的桥面受力类似,变形较大,容易引起悬臂板中部桥面铺装开裂,因此大跨径、大悬臂矮塔斜拉桥桥面铺装技术是其关键技术之一。浇注式沥青混凝土桥面铺装变形能力强,整体性优良,具有优良的抗低温开裂、抗疲劳开裂性能和变形追从性,但是因所用改性沥青的高温性能、变形追从性和耐久性不足,很多桥面通车后不久即发生严重破坏。本研究在已有国内外相关研究的基础上,结合佛山石湾特大桥建设工程,深入系统地分析石湾特大桥桥面铺装的受力特性,采用TLA+SBS复合改性沥青和掺加玄武岩矿物纤维,对TLA+SBS复合改性沥青混凝土TGAC桥面铺装的配合比设计、路用性能、施工工艺和施工质量控制方法进行了研究:1、石湾特大桥桥面铺装层最不利车载作用位置及各受力控制指标值通过建立大跨径、大悬臂矮塔斜拉桥桥面复合铺装体系模型,采用三维有限元方法分析桥面铺装层的力学响应,以确定最不利车载作用位置及铺装层的各受力控制指标值。在此基础上,提出了SBS改性AC-13C铺装混合料和复合改性TGAC-10铺装混合料的技术指标要求,并得到复合改性TGAC-10铺装下面层的疲劳寿命预估方程。2、TLA+SBS复合改性沥青组成材料优化研究通过对十三种TLA掺量的TLA+SBS复合改性沥青分别进行试验,得出了TLA+SBS复合改性沥青的软化点、当量软化点、针入度、针入度指数PI、延力等随TLA掺量的变化规律,确定了TLA+SBS复合改性沥青的最佳配比,提出了TLA+SBS复合改性沥青的技术性能指标要求。通过对TLA+SBS复合改性沥青进行微观性质试验,揭示了TLA+SBS复合改性沥青的改性机理。3、TLA+SBS复合改性沥青混凝土混合料组成优化研究设计出公称粒径为9.5mm的TLA+SBS复合改性沥青混凝土TGAC-10的级配范围。采用五个不同TLA掺量(0%、20%、30%、40%、50%)的TLA+SBS复合改性沥青分别对AC-10、SMA-10和TGAC-10沥青混凝土进行马歇尔试验配合比设计,并对其路用性能进行了对比研究,得出了各种沥青混凝土的路用性能指标随TLA掺量的变化规律,确定了满足桥面铺装路用性能要求的TGAC-10的目标配合比,提出了佛山石湾特大桥桥面铺装TGAC-10的技术要求。4、TLA+SBS复合改性沥青混凝土桥面铺装质量控制指标与方法根据室内外试验结果,依托实体工程,对TLA+SBS复合改性沥青混凝土TGAC-10桥面铺装的施工工艺和施工质量控制技术进行研究,提出了TLA+SBS复合改性沥青混凝土TGAC桥面铺装的施工技术指南和质量控制标准。5、TLA+SBS复合改性沥青混凝土桥面铺装的使用性能通过对TLA+SBS复合改性沥青混凝土TGAC桥面铺装跟踪观测以及PFWD模量、平整度、压实度、车辙等使用性能检测。结果表明:铺装下层TGAC-10沥青混合料的生产配合比控制严格,满足质量控制要求;并且具有优良的使用性能,达到施工控制要求,具有显著的经济和社会效益。
[Abstract]:The cantilever plate stiffness of the large cantilever short tower cable-stayed bridge is relatively small, and the stiffness of the web and the bracing plate is large. The concrete box girder is similar to the steel box girder, and the deformation is larger. It is easy to cause the crack of the bridge deck in the middle of the cantilever plate. So the big span and the large cantilever and short tower cable-stayed bridge deck pavement technology is one of the key technologies. The concrete bridge deck pavement has strong deformability, good integrity, excellent resistance to low temperature cracking, fatigue cracking resistance and deformability. However, because of the high temperature performance of the modified asphalt, the deformation chasing and durability are insufficient, and many bridge surfaces have been damaged seriously after the traffic. This study is based on the foundation of related research both at home and abroad. On the basis of the construction project of the Shiwan special bridge in Foshan, the stress characteristics of the bridge deck pavement of the Shiwan bridge are systematically analyzed. The mixture ratio of TLA+SBS composite modified bitumen and basalt mineral fiber is used to design the mixture ratio of the TLA+SBS composite modified asphalt concrete TGAC bridge deck pavement, the road performance, the construction technology and the construction quality control method. 1, the most disadvantageous position of the vehicle on the deck of the bridge deck of the Shiwan special bridge and the index value of the force control, through the establishment of the model of the composite paving system of the large cantilever and short tower cable-stayed bridge deck, the mechanical response of the deck pavement is analyzed by the three-dimensional finite element method, so as to determine the most unfavorable position of the vehicle and the various loading layers of the deck. On this basis, the technical requirements of SBS modified AC-13C paving mixture and composite modified TGAC-10 paving mixture are proposed, and the fatigue life prediction equation of the lower layer of composite modified TGAC-10 pavement is obtained, and the optimization of the composition of TLA+SBS composite modified asphalt is studied through the TLA+SBS compound of thirteen kinds of TLA content. The modified asphalt was tested separately, and the softening point of TLA+SBS composite modified bitumen, the equivalent softening point, the needle penetration, the needle penetration index PI and the extension of the TLA were determined, and the optimum ratio of the TLA+SBS compound modified asphalt was determined. The technical performance requirements of the TLA+SBS compound modified asphalt were put forward. The compound modification of TLA+SBS was made by the compound modification of the asphalt. The microstructure test of asphalt was carried out, the modification mechanism of TLA+SBS composite modified asphalt was revealed.3, the composition optimization of TLA+SBS composite modified asphalt concrete mixture was designed to design the gradation range of TLA+SBS composite modified asphalt concrete TGAC-10 with nominal particle size of 9.5mm, and the TLA+SBS composite modification of five different TLA contents (0%, 20%, 30%, 40%, 50%) was used. The asphalt concrete of AC-10, SMA-10 and TGAC-10 asphalt concrete is designed by Marshall test match ratio respectively, and its road performance is compared. The change law of various asphalt concrete pavement performance indexes with the content of TLA is obtained, and the target mix ratio of TGAC-10 to meet the performance requirements of bridge deck pavement is determined. The technical requirements of the bridge deck pavement of the Shiwan special bridge in Foshan, Foshan, requirements.4, TLA+SBS composite modified asphalt concrete bridge deck pavement quality control index and method based on the laboratory and outdoor test results, relying on the solid engineering, the construction technology and construction quality control technology of TGAC-10 bridge deck pavement of TLA+SBS composite modified asphalt concrete are studied, and T is put forward. LA+SBS composite modified asphalt concrete TGAC bridge deck pavement construction technical guide and quality control standard.5, TLA+SBS composite modified asphalt concrete bridge deck pavement performance through the TLA+SBS composite modified asphalt concrete bridge deck pavement tracking observation and PFWD modulus, evenness, compaction, rutting and other performance testing results. The results show that the production fit ratio of the TGAC-10 asphalt mixture in the underlayer is strictly controlled and meets the requirements of quality control; and it has excellent performance and achieves construction control requirements, and has remarkable economic and social benefits.
【学位授予单位】:长安大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:U443.33
【参考文献】
相关期刊论文 前10条
1 薛昕;王民;高博;冯铨;;复合改性沥青浇筑式混凝土性能研究[J];重庆交通大学学报(自然科学版);2010年03期
2 李宇峙,刘朝晖,黄云涌;SBS 改性沥青混合料性能对比试验研究[J];长沙交通学院学报;2001年02期
3 查旭东;季文广;李平;;特立尼达湖沥青灰分的试验分析[J];长沙交通学院学报;2008年04期
4 张锐;黄晓明;赵永利;;浇注式沥青混凝土级配设计[J];东南大学学报(自然科学版);2007年04期
5 邓强民;倪富健;顾兴宇;陈荣生;;钢桥面铺装非均布轮载效应分析[J];东南大学学报(自然科学版);2007年04期
6 沙庆林;SAC和其他粗集料断级配的矿料级配设计方法[J];公路;2005年01期
7 王迎军,朱桂新,陈旭东;虎门大桥钢桥面铺装的使用和维护[J];公路交通科技;2004年08期
8 樊叶华,杨军,钱振东,王建伟;国外浇注式沥青混凝土钢桥面铺装综述[J];中外公路;2003年06期
9 皮育晖;陈仕周;;浇注式沥青混凝土在桥面铺装中的应用[J];中外公路;2006年01期
10 万涛涛;;英国浇筑式桥面铺装混合料MA优化设计[J];中外公路;2012年06期
相关博士学位论文 前4条
1 甄晓霞;大跨径钢桥桥面铺装体系力学行为研究[D];华南理工大学;2010年
2 李洪涛;大跨径悬索桥新型钢桥面铺装结构研究[D];东南大学;2006年
3 赵永利;沥青混合料的结构组成机理研究[D];东南大学;2005年
4 刘朝晖;连续配筋混凝土刚柔复合式沥青路面研究[D];长沙理工大学;2007年
相关硕士学位论文 前10条
1 张付军;大型钢桥面铺装用环氧沥青混合料的疲劳性能研究[D];中南大学;2010年
2 成峰;大跨径钢桥面铺装力学分析深入研究[D];东南大学;2004年
3 樊叶华;大跨径钢桥面浇注式沥青混凝土铺装技术研究[D];东南大学;2004年
4 潘友强;国产硬质沥青在浇注式沥青混凝土中的应用研究[D];东南大学;2006年
5 刘红琼;水泥砼桥桥面铺装防水粘结层性能研究[D];重庆交通大学;2008年
6 刘小旭;FRP-沥青混凝土钢桥面铺装结构静力特性研究[D];重庆交通大学;2010年
7 杨胜丰;浇注式TLA复合改性沥青混凝土性能试验研究[D];长沙理工大学;2013年
8 李瑶;浇注式沥青混凝土钢桥面铺装结构的研究[D];重庆交通大学;2012年
9 杨文明;沥青混凝土桥面铺装病害研究[D];长安大学;2013年
10 方远;大跨连续钢箱梁桥大节段吊装施工控制研究[D];浙江大学;2014年
,本文编号:1896383
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1896383.html