当前位置:主页 > 科技论文 > 路桥论文 >

车辆换道行为风险识别研究

发布时间:2018-05-30 00:47

  本文选题:换道行为 + 支持向量机 ; 参考:《昆明理工大学》2017年硕士论文


【摘要】:换道行为是车辆在行驶过程中的随机动作,该行为有可能产生交通冲突点,甚至导致不同程度的交通事故发生。一般根据换道过程平顺或猛烈,大致将其分为安全性换道行为、风险性换道行为两类,换道行为过于猛烈将增加交通事故风险。伴随车辆换道预警系统的不断发展,车辆换道预警系统的出现,有望在车辆进行换道的起始阶段准确识别出两类不同的换道行为,并自动对存在风险的换道操作给出相应预警或干预。本文运用模式识别技术中的支持向量机方法,尝试建立一种能有效识别区分安全换道和风险换道两种驾驶行为的识别模型。借助KMRTDS驾驶模拟仿真平台开展安全换道和风险换道模拟实验,用采集到的驾驶操纵数据和车辆运行数据提取训练及测试识别模型的样本。本文研究意义在于,当识别模型判断出某一换道行为,因操作过于猛烈而超出一般安全换道行为阈值时,换道预警系统第一时间报警提示驾驶员,以避免事故发生。分类模型的识别效果主要受识别时间窗大小、特征参数、模型自身参数等方面的影响,本文运用ROC.运行结果,综合AUC值和模型的分类准确率对识别效果进行分析,通过“最优时间窗确定、最优特征参数提取、最优算法寻找模型参数”三个步骤,建立最优识别模型。首先,将定义的换道行为起始时刻作为时间窗中点,向前向后分别取相同时间段(0.5s、1s、1.5s)形成3个时间窗(1s、2s、3s),并经过对比分析三个时间窗下的模型识别效果,确定了最优时间窗为2s。其次,运用逐步回归分析、因子分析、多维偏好分析三种方法对原有的特征参数进行降维处理。其中,经逐步回归分析法提取的特征参数训练后的分类器性能最好,故将此方法提取的参数作为最优特征参数。最后,运用了枚举算法、粒子群算法、遗传算法等三种算法进行参数寻优。其中,遗传算法的分类准确率最低,枚举算法和粒子群算法分类准确率较为接近,但后者的AUC值为0.992,接近原始数据下的0.996,较好的弥补了因数据降维处理而损失的信息,所以选取粒子群算法为最优算法。在最优时间窗、最优特征参数、最优模型参数确定后,借助LIBSVM算法,在MATLAB中训练、验证识别模型,得到模型最终总体识别率为92.55%,基本能准确识别出车道保持、安全换道、风险换道三种行为,达到了运用较小样本量建立较高识别率模型的预期,取得较好的识别效果。
[Abstract]:The behavior of changing the road is the random action of the vehicle in the course of driving, which may produce traffic conflict points and even lead to traffic accidents of different degrees. Generally according to the smooth or violent course of changing the road, it can be roughly divided into two types of safe changing, and the risk of changing the road is two kinds, and the risk of traffic accident will be increased if the change of course is too violent. With the continuous development of the vehicle early warning system, the emergence of the vehicle early warning system, it is expected to accurately identify two different types of road change behavior in the initial phase of the vehicle change. And give the corresponding warning or intervention to the change operation of the risk automatically. In this paper, the support vector machine (SVM) method in pattern recognition technology is used to establish a recognition model which can effectively identify and distinguish two driving behaviors: safe change and risk change. With the help of the KMRTDS driving simulation platform, the simulation experiments of safe and risk change are carried out, and the samples of training and testing identification model are extracted from the collected driving control data and vehicle running data. The research significance of this paper is that when the identification model judges a certain changing behavior and exceeds the threshold of the general safe changing behavior because of the heavy operation, the early warning system of changing the channel will alert the driver in the first time to avoid the accident. The recognition effect of the classification model is mainly affected by the size of the time window, the characteristic parameters and the model's own parameters. The result of the operation is based on the analysis of the AUC value and the classification accuracy of the model. The optimal recognition model is established through the three steps of "determining the optimal time window, extracting the optimal feature parameters and finding the parameters of the model by the optimal algorithm". Firstly, the starting time of the change behavior is taken as the midpoint of the time window, and the same time interval is taken forward and backward, respectively.) three time windows are formed, which are 1 sm ~ 2 s ~ 3 s ~ (3), and the optimal time window is determined to be 2 s by comparing and analyzing the model recognition effect under the three time windows. Secondly, stepwise regression analysis, factor analysis and multidimensional preference analysis are used to reduce the dimension of the original characteristic parameters. Among them, the performance of the classifier trained by stepwise regression analysis is the best, so the parameters extracted by this method are regarded as the optimal feature parameters. Finally, three kinds of algorithms, enumeration algorithm, particle swarm optimization algorithm and genetic algorithm, are used to optimize the parameters. The classification accuracy of genetic algorithm is the lowest, the classification accuracy of enumeration algorithm and particle swarm optimization algorithm is close, but the AUC value of the latter is 0.992, which is close to 0.996 under the original data, which makes up for the loss of information due to the dimensionality reduction processing. So the particle swarm optimization algorithm is chosen as the optimal algorithm. After the optimal time window, the optimal feature parameter and the optimal model parameter are determined, the recognition model is trained in MATLAB with the help of LIBSVM algorithm, and the overall recognition rate of the model is 92.55. The three behaviors of risk changing reach the expectation of establishing a higher recognition rate model by using smaller sample size and obtain better recognition effect.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491

【参考文献】

相关期刊论文 前9条

1 丁洁云;党睿娜;王建强;李克强;;驾驶人换道决策分析及意图识别算法设计[J];清华大学学报(自然科学版);2015年07期

2 袁伟;张亚岐;王畅;;支持向量机在换道行为识别中的应用研究[J];计算机工程与设计;2013年02期

3 吕岸;胡振程;陈慧;;基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析[J];汽车工程;2010年07期

4 郭凤香;熊坚;秦雅琴;万华森;;基于驾驶模拟实验的85%位车速预测模型[J];交通科技与经济;2010年03期

5 张晓龙;江川;骆名剑;;ROC分析技术在机器学习中的应用[J];计算机工程与应用;2007年04期

6 郑勇涛,刘玉树;支持向量机解决多分类问题研究[J];计算机工程与应用;2005年23期

7 唐发明,王仲东,陈绵云;支持向量机多类分类算法研究[J];控制与决策;2005年07期

8 游家兴;如何正确运用因子分析法进行综合评价[J];统计教育;2003年05期

9 王冬梅,沈颂东;逐步回归分析法[J];工业技术经济;1997年03期

相关博士学位论文 前4条

1 王畅;车辆换道预警的若干关键问题研究[D];长安大学;2012年

2 彭金栓;基于视觉特性与车辆相对运动的驾驶人换道意图识别方法[D];长安大学;2012年

3 贾立山;体现驾驶员特性的车道偏离预警系统关键技术研究[D];华中科技大学;2011年

4 顾柏园;基于单目视觉的安全车距预警系统研究[D];吉林大学;2006年

相关硕士学位论文 前4条

1 张利丹;面向车道偏离预警系统的驾驶员无意识车道偏离识别方法研究[D];吉林大学;2015年

2 孙纯;基于驾驶人视觉特性的换道意图识别[D];长安大学;2012年

3 彭璐;支持向量机分类算法研究与应用[D];湖南大学;2007年

4 骆名剑;基于ROC的分类算法评价方法[D];武汉科技大学;2005年



本文编号:1953192

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1953192.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2dc96***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com