地震动斜入射下海底沉管隧道的动力响应分析
发布时间:2018-06-09 02:57
本文选题:沉管隧道结构 + 粘弹性人工边界 ; 参考:《广州大学》2017年硕士论文
【摘要】:随着我国经济正在突飞猛进的发展,在这个过程中也伴随着现代交通建设的发展,许多大型海底隧道工程已经建成或正在建设规划中,如琼州跨海工程、港珠澳沉管隧道等。在修建这些工程的地区,必定会存在一些高烈度地震区,则对其抗震性能的研究必须受到重视。目前,在海底沉管隧道结构抗震研究中,一方面,通常采用地震波垂直入射的方式对海底沉管隧道结构进行动力响应分析,但假定垂直入射的方式并不符合地震波入射的实际情况,而且会带来不可忽略的误差;另一方面,未考虑海水因素的影响,或虽然考虑了海水因素的影响,但却未能真实反映实际工程情况。因此,考虑地震波斜入射与海水因素,既可以真实的反映沉管隧道结构的破坏机制,又具有实际的工程意义。本文基于粘弹性人工边界与有限元法相结合的波动分析方法,建立了海水—沉管隧道—海床的整体有限元分析模型,考虑了海水与海床的流固耦合动力反应,研究了地震波斜入射以及海水深度、沉管隧道结构的埋置深度和海床土的弹性模量等因素对沉管隧道结构动力反应的影响。本文主要的研究内容如下:首先,基于粘弹性人工边界理论和外源波动输入的方法,建立了二维地震动斜入射下人工边界结点等效荷载的计算方法,应用数学软件matlab编制了等效地震结点荷载的计算程序,通过数值算例验证了该计算方法与程序的准确性和精度。其次,基于建立的海水—沉管隧道—海床的整体有限元分析模型,研究了地震P波垂直入射作用下,海水深度、沉管隧道结构的埋置深度和海床土的弹性模量等因素对沉管隧道结构动力反应的影响程度和规律。然后,研究了地震P波斜入射作用下,不同入射角度对沉管隧道结构的动力响应影响特性,并讨论了海水深度、沉管隧道结构的埋置深度和海床土的弹性模量等因素对沉管隧道结构动力反应的影响程度和规律。与地震P波垂直入射作用下相比较,在海水深度、沉管隧道结构的埋置深度和海床土的弹性模量对沉管隧道结构的动力反应影响方面,有着相同的影响趋势,但影响的程度则不相同;另外,也得出了其他的相关有益结论。最后,研究了地震SV波斜入射作用下,不同入射角度对沉管隧道结构的动力响应影响特性,并讨论了海水深度、沉管隧道结构的埋置深度和海床土的弹性模量等因素对沉管隧道结构动力反应的影响程度和规律。本文研究了海底沉管隧道结构的地震反应,合理解释了沉管隧道结构的动力反应特性,可对沉管隧道结构抗震设计方面提供参考依据。
[Abstract]:With the rapid development of China's economy and the development of modern traffic construction in this process, many large seabed tunnel projects have been built or are in the process of construction planning, such as the Qiongzhou sea crossing project, Hong Kong Zhuhai Macao immersed tunnel, and so on. In the construction of these projects, there will be some high intensity seismic areas. The research on seismic performance must be paid attention to. At present, on the one hand, the dynamic response of the submarine immersed tube tunnel is usually analyzed by the vertical incidence of seismic waves, but it is assumed that the mode of vertical incidence does not conform to the actual situation of the incident wave incident, and it will not be negligible. On the other hand, without considering the influence of sea water factors or considering the influence of sea water factors, it can not truly reflect the actual engineering situation. Therefore, considering the oblique incidence of seismic waves and the factors of sea water, it can not only reflect the damage mechanism of the tunnel structure of the immersed tube, but also have practical engineering significance. This paper is based on the viscoelastic artificial. The finite element analysis model of sea water immersed tube tunnel and seabed is established by the method of wave analysis combined with boundary and finite element method. The dynamic response of sea bed and sea bed is considered, the oblique incidence of seismic waves and depth of sea water, the buried depth of the tunnel structure and the elastic modulus of the seabed soil are studied. The main research contents of this paper are as follows: first, based on the viscoelastic artificial boundary theory and the method of external wave input, a calculation method for the equivalent load of the artificial boundary node under the oblique incidence of the two dimensional ground motion is established, and the calculation program of the equivalent seismic node load is compiled with the mathematical software MATLAB. The accuracy and accuracy of the method and program are verified by a numerical example. Secondly, based on the established finite element analysis model of the seawater immersed tunnel tunnel and seabed, the depth of sea water, the buried depth of the immersed tunnel tunnel structure and the elastic modulus of the sea bed soil are studied under the vertical incidence of the seismic P wave. The influence of the dynamic response on the dynamic response of the immersed tube tunnel under the oblique incidence of the earthquake P wave is studied. The influence of the depth of the sea water, the buried depth of the tunnel structure and the elastic modulus of the seabed soil on the dynamic response of the immersed tunnel structure are discussed. Law. Compared with the vertical incidence of the seismic P wave, the depth of the sea water, the buried depth of the immersed tunnel structure and the elastic modulus of the seabed soil have the same influence on the dynamic response of the immersed tunnel structure, but the degree of influence is different. In addition, other relevant useful conclusions are obtained. Finally, the research ground is made. The influence of different angle of incidence on the dynamic response of the immersed tube tunnel under the oblique incidence of SV wave, and the influence degree and law of the depth of sea water, the buried depth of the immersed tube tunnel structure and the elastic modulus of the seabed soil on the dynamic response of the immersed tunnel tunnel are discussed. It should reasonably explain the dynamic response characteristics of immersed tube tunnel structure, and provide reference for aseismic design of immersed tunnel structure.
【学位授予单位】:广州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U459.5;U452.28
【参考文献】
相关期刊论文 前10条
1 汪精河;周晓军;刘建国;王晓波;;地震波斜入射下浅埋偏压隧道动力响应数值分析[J];兰州大学学报(自然科学版);2016年04期
2 殷琳;楼梦麟;康帅;;地下结构地震反应的振动台模型试验研究[J];同济大学学报(自然科学版);2015年10期
3 李霞;杜修力;路德春;田春雨;;双向水平地震作用下复杂地铁车站振动台模型试验的方案研究[J];防灾减灾工程学报;2015年03期
4 赵福W,
本文编号:1998530
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/1998530.html