玄武岩纤维高粘沥青及混合料性能特性研究
发布时间:2018-06-13 16:18
本文选题:玄武岩纤维 + 高粘沥青改性剂 ; 参考:《浙江大学》2015年硕士论文
【摘要】:研究具有优良路用性能的沥青混合料,对解决南方高温多雨地区、山岭重丘区的长上坡路段、大型桥梁的桥面铺装层以及特重交通等特殊路段的沥青路面早期病害问题,延长使用寿命,具有重要意义。在总结玄武岩纤维沥青混合料和高粘度改性沥青的已有研究基础上,本文对玄武岩纤维和直投式高粘沥青改性剂复合使用后沥青及混合料的性能展开研究,并对其增强机理进行分析,获得比单一改性方式性能更优的高性能玄武岩纤维高粘沥青混合料。主要研究内容与成果如下: (1)通过DSR试验、测力延度试验和旋转粘度试验分析玄武岩纤维和高粘改性剂对沥青粘弹特性、高低温性能和感温性能的影响,发现:两种材料明显改变了沥青的粘弹特性,沥青的高低温性能和感温性均得到明显改善。 (2)通过差示扫描量热试验(DSC)和四组分试验分析高粘改性剂对沥青高温性能的改善机理,发现改性后高温性能稳定的胶质和沥青质增多,在高温时易于发生相态转变的芳香分与饱和分减少,沥青胶体结构向凝胶型方向发生转变。 (3)通过车辙试验、不同温度下的弯曲破坏试验和冻融劈裂试验评价玄武岩纤维高粘沥青混合料的路用性能。结果表明玄武岩纤维高粘沥青混合料具有较好的高温稳定性和水稳定性,相关指标均优于相同级配下的玄武岩纤维SBS改性沥青混合料,但低温变形能力不如后者。 (4)对劈裂破坏后的混合料试样进行环境扫描电镜(ESEM)观测,分析玄武纤维在沥青混合料中的作用机理,结果表明玄武岩纤维在沥青混合料中呈现纵横交错的网状分布,这有利于发挥增强、增弹和增粘作用,并约束或延缓徽裂缝扩展。同时也发现玄武岩纤维在沥青混合料中发生了拉断破坏,说明玄武岩纤维发挥了加筋增强的作用。 (5)通过现场试验段铺筑,对玄武岩纤维高粘沥青SMA混合料的施工工艺进行研究,确定了“直投加入、二次干拌”的拌和工艺,并提出了摊铺与压实过程的关键控制指标。
[Abstract]:It is of great significance to study the asphalt mixture with excellent road performance and to prolong the service life of the asphalt pavement in the South high temperature and rainy areas, the long upslope section of the mountainous areas, the bridge deck pavement and the special traffic. On the basis of the research on the viscosity modified asphalt, the performance of the basalt fiber and the direct cast high viscosity asphalt modifier was studied in this paper, and its strengthening mechanism was analyzed. The high performance high performance basalt fiber high viscosity asphalt mixture was obtained better than the single modified method. The main research content and the main content were as follows. The results are as follows:
(1) the effects of basalt fiber and high viscosity modifier on the viscoelastic properties of bitumen, high and low temperature performance and temperature sensing properties were analyzed by DSR test, force ductility test and rotating viscosity test. It was found that the viscoelastic properties of the asphalt were obviously changed by the two materials, and the high and low temperature performance and the temperature sensitivity of asphalt were obviously improved.
(2) through the differential scanning calorimetry (DSC) and four component test, the improvement mechanism of high viscosity modifier on high temperature performance of asphalt was analyzed. It was found that the stable resin and asphaltene were increased at high temperature after the modification, and the aromatic and saturation points of phase transition were reduced at high temperature, and the structure of asphalt colloid changed to the gel direction.
(3) through the rutting test, the bending failure test at different temperatures and the freeze-thaw splitting test to evaluate the pavement performance of the high viscosity asphalt mixture of basalt fiber. The results show that the high viscosity asphalt mixture with high viscosity of basalt fiber has good high temperature stability and water stability, and the related indexes are better than the SBS modified leachate of basalt fiber under the same grading. Green mixture, but the low temperature deformability is not as good as the latter.
(4) the samples of the mixture after splitting and breaking are observed by environmental scanning electron microscope (ESEM), and the mechanism of the basalt fiber in the asphalt mixture is analyzed. The results show that the basalt fiber in the asphalt mixture presents a crisscross network distribution, which is beneficial to the enhancement, the increase of the elasticity and the adhesion, and the restraint or delay of the expansion of the emblem crack. It was also found that the basalt fiber had broken fracture in the asphalt mixture, which indicated that the basalt fiber played the role of reinforcement and reinforcement.
(5) through the construction of field test section, the construction technology of high viscosity asphalt SMA mixture of basalt fiber was studied, and the mixing process of "direct joining and two dry mixing" was determined, and the key control indexes of paving and compaction were put forward.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U414
【参考文献】
相关期刊论文 前10条
1 范文孝;康海贵;郑元勋;;玄武岩纤维改性沥青混合料路用性能试验研究(英文)[J];Journal of Southeast University(English Edition);2010年04期
2 舒翔;邱志雄;张国炳;;矿物纤维改性沥青在粤赣高速公路路面上的应用[J];公路;2006年04期
3 刘新权;丁庆军;姚永永;胡曙光;;高粘度改性沥青配制钢箱梁桥面SMA铺装层的研究[J];公路;2007年09期
4 汤寄予;高丹盈;韩菊红;;玄武岩纤维对沥青混合料水稳定性影响的研究[J];公路;2008年01期
5 武贤慧,张登良;纤维增强沥青混凝土低温性能研究[J];公路交通科技;2005年02期
6 吴少鹏;叶群山;刘至飞;;矿物纤维改善沥青混合料高温稳定性研究[J];公路交通科技;2008年11期
7 卢辉;张肖宁;胡玲玲;;矿物纤维沥青混合料在长陡坡路段的应用[J];中外公路;2007年03期
8 郝孟辉;郝培文;杨黔;杨凯;;玄武岩短切纤维改性沥青混合料路用性能分析[J];广西大学学报(自然科学版);2011年01期
9 孙璐;辛宪涛;王鸿遥;顾文钧;;多维数多尺度纳米材料改性沥青的微观机理[J];硅酸盐学报;2012年10期
10 陈华鑫;贺孟霜;李媛媛;颜赫;;沥青与沥青组分的差示扫描量热研究[J];重庆交通大学学报(自然科学版);2013年02期
,本文编号:2014621
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2014621.html