铁路大跨度简支钢桁梁桥车—桥耦合振动研究
本文选题:大跨度钢桁梁桥 + 车-桥耦合 ; 参考:《兰州交通大学》2015年硕士论文
【摘要】:车辆通过桥梁时将引起桥梁结构的振动,而桥梁结构的振动反过来又会影响车辆的振动,这就是车-桥耦合振动的问题。随着车辆速度和载重的不断提高,以及桥梁结构在铁路线路中的大量使用,为有效的对钢桁梁桥运营状态和车辆的舒适性、安全性和平稳性进行评估,以及为以后同类桥梁的优化设计提供参考,需对铁路大跨度简支钢桁梁桥进行车-桥耦合振动研究。本文以黄韩侯铁路新黄河特大桥-156m简支钢桁梁桥作为工程背景进行车-桥耦合振动研究。首先,建立了四轴27个自由度的车辆振动分析模型,结合模型利用Lagrange方程推导了车辆的运动方程并组建了动力学方程组,采用模态综合法建立了桥梁的动力振动方程,对轮轨相互作用关系进行了详细的阐述,对车-桥耦合系统激励源(人工蛇形波和轨道不平顺)进行了模拟,组建了车-桥系统振动的动力平衡总方程组,并介绍了动力方程组的求解方法以及车-桥耦合振动联合仿真技术。然后,总结了国内外关于车-桥耦合振动性能评价指标体系的相关规范,结合本文实际工程背景建立了统一的振动性能评价标准。与此同时,结合本文的工程背景及相关计算参数,利用ANSYS和MIDAS/CIVIL软件建立新黄河特大桥的有限元模型,对其动力特性进行计算,并依据各国不同规范的规定对桥梁自振频率进行了评定和分析。最后,利用ANSYS和UM软件联合仿真分析技术实现了单个机车、编组客车和编组货车以设计时速通过桥梁时,对大跨度简支钢桁梁桥车-桥耦合振动系统的各项桥梁和车辆动力学响应参数的分析,计算了共振速度。在此基础上从桥梁结构的桥门架、宽跨比、曲线钢桁梁桥和车辆系统的轨道不平顺以及货车编组角度出发,研究大跨度简支钢桁梁桥车-桥耦合振动的影响因素。经过计算分析得出:(1)大跨度钢桁梁桥的横向刚度相对较小;(2)不同编组情况下以设计时速通过桥梁时,车辆和桥梁的各项动力响应参数均在规范允许的范围之内;(3)钢桁梁桥桥门架对桥梁跨中横向加速度影响较大;(4)曲线钢桁梁桥随着线路半径的增大,各车辆动力响应参数逐渐变小,轮轨力受到影响;(5)钢桁梁桥宽跨比的增加使得横向刚度随之增加,桥梁横向振动变小;(6)各项车辆动力响应均随着轨道情况变差而总体呈现逐渐增大趋势,车辆安全性、舒适性和平稳性指标逐渐变差;(7)全列空车编组和空重混编对钢桁梁车-桥耦合系统是不利的编组形式,实际情况中应该尽量避免。
[Abstract]:When a vehicle passes a bridge, it will cause the vibration of the bridge structure, and the vibration of the bridge structure will affect the vibration of the vehicle, which is the problem of the vehicle-bridge coupling vibration. With the continuous improvement of vehicle speed and load, as well as the extensive use of bridge structure in railway lines, in order to effectively evaluate the operating state of steel truss bridge and the comfort, safety and stability of the vehicle, It is necessary to study the vehicle-bridge coupling vibration of long span simply supported steel truss girder bridge. In this paper, the vehicle-bridge coupling vibration of Huanghanhou Railway New Yellow River Bridge-156m simply supported steel truss bridge is studied as the engineering background. Firstly, the vehicle vibration analysis model with four axes and 27 degrees of freedom is established, the vehicle motion equation is derived by Lagrange equation, and the dynamic vibration equation of the bridge is established by using the modal synthesis method. The wheel-rail interaction relationship is described in detail, the excitation source (artificial snake wave and track irregularity) of the vehicle-bridge coupling system is simulated, and the general equations of dynamic balance of the vehicle-bridge system vibration are established. The solving method of dynamic equations and the joint simulation technology of vehicle-bridge coupling vibration are introduced. Then, the related norms of the evaluation index system of vehicle-bridge coupling vibration performance at home and abroad are summarized, and the unified evaluation standard of vibration performance is established according to the actual engineering background of this paper. At the same time, the finite element model of the new Yellow River Bridge is established by using ANSYS and Midas / CIVIL software combined with the engineering background and related calculation parameters of this paper, and its dynamic characteristics are calculated. The natural vibration frequency of the bridge is evaluated and analyzed according to the regulations of different countries. Finally, using ANSYS and UM software joint simulation and analysis technology to realize the single locomotive, marshalling passenger cars and marshalling trucks to design the speed of the bridge, The dynamic response parameters of long span simply supported steel truss bridge with vehicle-bridge coupling vibration system are analyzed and the resonance velocity is calculated. Based on this, the influence factors of vehicle-bridge coupling vibration of long-span simply supported steel truss bridges are studied from the point of view of bridge portal frame, ratio of width to span, track irregularity of curved steel truss bridge and vehicle system, and truck marshalling. Through the calculation and analysis, it is concluded that the transverse stiffness of the large-span steel truss bridge is relatively small, and that under different marshalling conditions, when the speed of design is used to pass through the bridge, The dynamic response parameters of vehicles and bridges are within the limits permitted by the code. (3) the portal frame of the steel truss bridge has a great influence on the transverse acceleration of the bridge span. (4) the curve steel truss bridge increases with the line radius. The dynamic response parameters of each vehicle become smaller gradually and the wheel / rail force is affected. 5) the transverse stiffness increases with the increase of the ratio of width to span of the steel truss bridge. The dynamic response of each vehicle is gradually increasing with the deterioration of the track condition, and the vehicle safety. The comfortableness and the smoothness index gradually become worse. (7) the all-row empty train marshalling and the air-weight mixing are the disadvantageous marshalling forms for the steel truss vehicle-bridge coupling system, which should be avoided as far as possible in the actual situation.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U441.3;U211.3
【共引文献】
相关期刊论文 前2条
1 秦立平;杨约民;程涛;吴振华;杨友全;;连续钢箱梁人行天桥的振动模态分析[J];湖北理工学院学报;2014年03期
2 R.Lalthlamuana;S.Talukdar;;Obtaining vehicle parameters from bridge dynamic response:a combined semi-analytical and particle filtering approach[J];Journal of Modern Transportation;2015年01期
相关博士学位论文 前7条
1 张田;强风场中高速铁路桥梁列车运行安全分析及防风措施研究[D];北京交通大学;2013年
2 周勇超;地震及汽车作用下长大混凝土桥梁振动研究[D];长安大学;2013年
3 王少林;地震作用下高速列车—轨道—桥梁耦合振动及行车安全性分析[D];西南交通大学;2013年
4 刘羽宇;跨座式单轨交通车辆与轨道梁的动力相互作用研究[D];西南交通大学;2011年
5 米仓;多振源激励下铁路枢纽站房结构振动响应分析与实测[D];天津大学;2013年
6 龙卫国;既有重载铁路桥梁提高轴重适应性研究[D];中南大学;2013年
7 李鑫;公路钢拱塔斜拉桥车致振动及地震响应研究[D];东北大学;2011年
相关硕士学位论文 前10条
1 刘学术;80m钢—砼组合铁路桁梁桥车桥耦合振动研究[D];兰州交通大学;2013年
2 熊伟;移动车辆荷载作用下自锚式悬索桥的动力响应分析[D];哈尔滨工业大学;2013年
3 毛国辉;带“S”形人行桥的大跨径双层斜拉桥车—桥耦合振动分析[D];重庆交通大学;2013年
4 孙继刚;大跨钢管混凝土拱桥车桥振动及加固设计研究[D];哈尔滨工业大学;2012年
5 马耕田;车辆—桥梁时变系统空间振动响应与稳定性分析[D];中南大学;2013年
6 夏彬;既有钢筋混凝土拱桥车桥耦合振动分析与应用[D];中南大学;2013年
7 王晓东;地震作用下轨道桥梁的动力响应及行车安全简化分析方法研究[D];北方工业大学;2014年
8 张校卫;风及车辆荷载作用下大跨度悬索桥的动力响应分析[D];郑州大学;2014年
9 朱柏铖;风荷载作用下城市轨道交通车辆—轨道动力特性及车辆速度限值研究[D];北京交通大学;2014年
10 肖新强;列车荷载作用下桥梁动力响应分析[D];湘潭大学;2014年
,本文编号:2047869
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2047869.html