篮家岩隧道洞口段围岩参数反分析及施工数值模拟研究
[Abstract]:With the rapid development of national economy, China has built a large number of railways, highways, tunnels and other underground structure construction is facing enormous opportunities and challenges. The physical and mechanical parameters of geological bodies in underground engineering are of great significance to the design, construction and mechanical analysis of tunnel engineering, and are related to the safety and economy of underground engineering. However, due to the complexity of underground environment, these important physical and mechanical parameters are difficult to determine. In order to solve this problem, the displacement back analysis method based on MEABP neural network is studied in this paper, and the parameters of surrounding rock are used to simulate the construction of main tunnel. The characteristics of displacement and stress of surrounding rock support structure in tunnel construction are analyzed. The relationship between displacement release rate and time and position of tunnel wall is studied. The main contents and results of this paper are as follows: (1) regression analysis of monitoring data of parallel guide holes and prediction of the stability of tunnel monitoring data. On the basis of the spatial effect of tunnel excavation, according to the previous studies and referring to Li Gongcai of Shandong University, we calculated the release rate of class V surrounding rock after excavation with the upper and lower step method. Taking section PDK51 326 as an example, the true deformation of tunnel measuring points is calculated. (2) to solve the defects of BP neural network, the thought evolution algorithm is used to optimize BP network. According to the orthogonal test scheme, FLAC2D is used to construct the sample set of displacement and back analysis. The displacement back analysis system based on MEABP neural network is established by learning and training, and the parameters of surrounding rock of this section of tunnel are inputted and calculated. (3) the construction of main tunnel is directly calculated according to the parameters of surrounding rock inversed by parallel guide tunnel. Based on the analysis of displacement and stress of K51 310 section after excavation of upper and lower steps, the law of displacement and stress distribution of this section in tunnel construction is obtained. (4) according to the arch top and waist in the construction of main tunnel, The whole process curve of horizontal and vertical displacement of arch foot and its middle part is changed. The change trend and reason are analyzed, and the tunnel constructed by upper and lower step method is found. The variation of vertical displacement in every key part of tunnel wall is less affected by lower step excavation than horizontal displacement. (5) according to the records of K51 326 section in numerical simulation, the key parts of tunnel wall (arch roof, arch waist) are studied. The displacement and displacement release rate of arch foot and their middle part) change with time. The following conclusions are drawn: the displacement release rate near arch top is generally larger, and the displacement and displacement release decrease gradually along the wall from arch top to arch foot. When the measuring point position is fixed, the displacement and release rate of the measuring point approximately accord with S curve with time, and when the time is fixed, The displacement and displacement release rate of each key position is about the quadratic parabola relation between the measuring point position and the vertical angle, because of the particularity of the research problem, the displacement release rate function is simplified to be about the measuring point position and the vertical angle? And the binary function of time t, the expression is obtained by multivariate regression. By comparing the fitting error, it is found that the function has a little error in the region near t0, a small error in the region of t0 and a little distance from t0, and a good regression effect. (6) finally, according to the variation of displacement release rate, Combined with the measured dome settlement sequence of section K51 326, the S-shaped curve is used to modify the measured sequence, and the whole process curve expression of section deformation in tunnel construction is obtained.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U452.12;U455.4
【相似文献】
相关期刊论文 前10条
1 郭建新;高永涛;;基于软破围岩锚喷支护位移理论的隧道支护时间分析[J];辽宁科技大学学报;2009年05期
2 王庆;郭德发;郭艳;;玛河电站水工隧洞围岩—支护系统非线性分析[J];中国水运(下半月);2010年06期
3 黄祥志;佘成学;;基于可拓和模糊综合评判理论的围岩稳定分类方法的比较[J];中国高新技术企业;2012年Z1期
4 黄运飞,杨维怀;地下工程围岩维护的新途径—切缝弱化围岩法研究[J];重庆大学学报(自然科学版);1988年03期
5 苏有财;白志勇;胡香芳;;综合评判法在围岩等级划分中的应用[J];路基工程;2008年05期
6 刘益锋;任旭华;张继勋;;基于灰关联理论的围岩参数敏感性分析[J];水电能源科学;2012年08期
7 汤伯森;弹塑围岩最小支护抗力和最大允许变形的估算[J];岩土工程学报;1986年04期
8 钟长平,许汉才;围岩松驰变形影响因素初探[J];西安公路交通大学学报;1994年01期
9 郑百功;佴磊;汪茜;陆威;;公路隧道围岩稳定性评价软件开发与应用[J];吉林大学学报(地球科学版);2010年05期
10 王新波;潘晓明;;地下圆形隧道开挖卸荷围岩弹塑性分析[J];河南科学;2010年09期
相关会议论文 前10条
1 齐俊修;刘力;刘克贤;杨国华;;十三陵抽水蓄能电站排风兼安全洞围岩监测及分析[A];岩土力学数值方法的工程应用——第二届全国岩石力学数值计算与模型实验学术研讨会论文集[C];1990年
2 刘宁;朱维申;于广明;;基于Mohr-Coulomb准则的初期支护与围岩耦合作用分析[A];第六届海峡两岸隧道与地下工程学术及技术研讨会论文集[C];2007年
3 倪国荣;张涵浩;李从众;;洞潭水电站球岔设计及球穴围岩稳定分析[A];第一届全国岩石力学数值计算及模型试验讨论会论文集[C];1986年
4 苏有财;谷婷;朱勇;白志勇;;模糊理论在隧道施工阶段围岩等级划分中的应用[A];第三届全国岩土与工程学术大会论文集[C];2009年
5 揭隽夫;;应用围岩分类法评价水工地下洞室围岩稳定的认识[A];地下工程经验交流会论文选集[C];1982年
6 仇文革;;隧道仰拱在支护与围岩交互作用中机理的试验研究[A];第二届全国青年岩石力学与工程学术研讨会论文集[C];1993年
7 齐俊修;王连捷;刘风成;王薇;董诚;;张河湾蓄能电站模型洞围岩位移反分析及预测研究[A];第一届中国水利水电岩土力学与工程学术讨论会论文集(下册)[C];2006年
8 徐平;夏铭佑;;大型地下洞室群围岩稳定三维弹塑性分析[A];第一届海峡两岸隧道与地下工程学术与技术研讨会论文集(上册)[C];1999年
9 庞永祥;;关于圆洞层状围岩的极向应力[A];地下工程经验交流会论文选集[C];1982年
10 孙文召;王丹;李昕;周晶;;水工高压引水隧洞围岩稳定分析[A];水与水技术(第一辑)选编[C];2011年
相关重要报纸文章 前1条
1 黄寰;成都理工大学解开围岩监测难题[N];中国国土资源报;2003年
相关博士学位论文 前6条
1 刘永平;隧道脆性—准脆性围岩连续损伤特征研究[D];吉林大学;2005年
2 张国华;基于围岩累积损伤效应的大断面隧道施工参数优化研究[D];中国科学院研究生院(武汉岩土力学研究所);2010年
3 李景龙;大型地下洞室群工程稳定性风险评估系统及其应用研究[D];山东大学;2008年
4 唐雄俊;隧道收敛约束法的理论研究与应用[D];华中科技大学;2009年
5 冷先伦;深埋长隧洞TBM掘进围岩开挖扰动与损伤区研究[D];中国科学院研究生院(武汉岩土力学研究所);2009年
6 邵勇;采空区多灾耦合作用下的隧道稳定性分析[D];南京大学;2012年
相关硕士学位论文 前10条
1 刘厚银;深埋隧洞围岩及支护结构稳定性研究[D];浙江工业大学;2015年
2 任明洋;篮家岩隧道洞口段围岩参数反分析及施工数值模拟研究[D];兰州交通大学;2015年
3 林峰;长距离输水隧洞TBM掘进过程围岩稳定性研究[D];浙江工业大学;2013年
4 刘士雨;地下工程围岩稳定性模糊综合评价及其应用研究[D];华东交通大学;2009年
5 周学良;隧道围岩变形监测与围岩参数的反演分析[D];合肥工业大学;2007年
6 林耿耿;引汉济渭工程控制闸枢纽围岩稳定性研究[D];清华大学;2013年
7 苗萌萌;引观入本工程北台支线引水隧洞围岩稳定性分析[D];辽宁工程技术大学;2013年
8 梁礼绘;高埋深地下洞室围岩稳定性及支护结构研究[D];天津大学;2007年
9 徐浩;隧道开挖对地面建筑物影响的研究[D];重庆交通大学;2010年
10 王向刚;公路隧道位移反演及其稳定性分析[D];山东大学;2005年
,本文编号:2122500
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2122500.html