北京市电动出租车充电设施选址优化
[Abstract]:With the problem of environment and energy shortage becoming more and more serious in recent years, the enthusiasm for energy structure adjustment and environmental protection technology research in the world is continuously rising. Because the traditional fuel gas vehicle is the main source of environmental pollution and energy consumption, the clean electric vehicle driven by electric energy has received wide attention and favor. At home and abroad, a large number of electric vehicles have been put into the market as a substitute for traditional vehicles. However, due to the limitation of the electric vehicle technology, the electric vehicle charging station can not use the traditional gas station construction mode and the same station density because of its short mileage and long charging time. As a result, the existing charging stations are difficult to meet the increasing demand for electric vehicles, which limits the further application and development of electric vehicles. Aiming at the problem of location of electric taxi charging station in Beijing, this paper simulates the process of electric taxi charging demand by Monte Carlo simulation based on the characteristic parameters of passenger travel and electric taxi operation. The spatiotemporal distribution of charging demand of electric taxi which can guarantee the normal travel of passengers is identified, the service range and capacity of charging station are divided by voronoi diagram method, and the distribution of charging demand is known. The cost function of the charging station construction and operation constitutes the objective function of the location model, and the solution of the low constraint location model is obtained by using the basic particle swarm optimization algorithm. The comparison with the solution of P median model verifies the validity of the low constraint location model, and introduces Tabu Particle Swarm Optimization (Tabu) algorithm to improve the accuracy of the algorithm, and analyzes the sensitivity of the parameters that affect the result of the location model. The optimal solution of the location model is obtained. In this paper, the probability distribution of passenger travel distance and time parameters and electric taxi battery state parameters is used to make the simulation process accord with the true probability of occurrence of events, thus avoiding the study of complex electric taxi running trajectory. The difficulty of data acquisition and data redundancy are reduced, and the accuracy of charge demand prediction is improved. A low-constraint location model based on particle swarm optimization algorithm is constructed to ensure that the accuracy of the model solution can meet the requirements. The requirements of model constraints are reduced, and the complexity of the model is simplified, so that the number of parameters that the model needs to adjust when the external conditions change is less, and the model can better deal with the location environment where the conditions change quickly. It avoids the complicated process of reconstructing the constraint conditions, enhances the applicability and ease of use of the model, and improves the accuracy of the algorithm by using Tabu Particle Swarm Optimization (Tabu) algorithm under the premise of ensuring the speed of solving the algorithm. The algorithm can avoid falling into the local optimal condition and provide a theoretical basis for the location model under low constraint conditions to meet the accuracy of the solution.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.8
【参考文献】
相关期刊论文 前10条
1 舒隽;唐刚;韩冰;;电动汽车充电站最优规划的两阶段方法[J];电工技术学报;2017年03期
2 陈娟;黄元生;鲁斌;;区域能源互联网信息物理建模及控制策略[J];电力自动化设备;2016年12期
3 刘丹;解强;张鑫;王海林;闫志勇;杨宏伟;郝郑平;;北京冬季雾霾频发期VOCs源解析及健康风险评价[J];环境科学;2016年10期
4 陈奇芳;刘念;陈征;张建华;;考虑充电需求与随机事件的光伏充电站实时运行策略[J];电工技术学报;2016年18期
5 李玉敏;张友国;;中国碳排放影响因素的空间分解分析[J];中国地质大学学报(社会科学版);2016年03期
6 Houssem Eddine Hadji;Malika Babes;;Integrating Tabu Search in Particle Swarm Optimization for the Frequency Assignment Problem[J];中国通信;2016年03期
7 姜大膀;刘叶一;;温室效应会使地球温度上升多高?——关于平衡气候敏感度[J];科学通报;2016年07期
8 潘竟虎;张文;王春娟;;2011—2013年中国雾霾易发生期间API的分布格局[J];环境工程学报;2016年03期
9 黄小庆;陈颉;田世明;曹一家;杨夯;江磊;;电动汽车充电站规划、运行中的大数据集成应用[J];电网技术;2016年03期
10 龚;张杰;蓝金辉;;雾霾情况下路网模型及雾霾对交通路网的影响[J];交通运输系统工程与信息;2015年05期
相关会议论文 前1条
1 张华民;;电动汽车及充电站技术现状及前景[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
相关博士学位论文 前2条
1 冯亮;电动汽车充电站规划研究[D];天津大学;2013年
2 姜星莉;经济全球化背景下中国能源安全问题研究[D];武汉大学;2010年
相关硕士学位论文 前5条
1 李亚芬;规模化区域电动乘用车负荷估算研究[D];北京交通大学;2014年
2 王辉;电动汽车充电站规划与运营研究[D];浙江大学;2013年
3 张国亮;城市内和城市间电动汽车充电站的选址布局研究[D];天津大学;2012年
4 张菁菁;电动汽车充电设施建设与发展的多方博弈分析[D];北京交通大学;2011年
5 文凯;借鉴国际经验发展我国新能源汽车产业研究[D];东北财经大学;2010年
,本文编号:2137814
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2137814.html