轨道交通U型梁的截面优化设计
[Abstract]:U beam is the most novel viaduct bridge type in urban rail transit. It has been applied more and more at home and abroad. U beam is a new type of prestressed concrete bridge composed of bottom slab, web plate and crossbeam. It has the characteristics of saving investment, beautiful appearance, high and low rail surface, short construction period and so on. The cross section of U-shaped beam is relatively special, the web plate and bottom plate are thin, and the section is open upward as a whole. As a result, the torsional stiffness is worse than that of the traditional beam section, and the traditional U-shaped beam has a series of problems, such as miscellaneous force, more fabrication steps, and complicated construction process, which has limited the use of the U-shaped beam in a wider range. Moreover, at present, the U-beam is in the initial stage in the rail transit of our country, the research of U-beam is not much, and the research of section optimization of U-beam at home and abroad is very few. In order to make the U-beam more economical and applicable and to make the U-beam be better applied in urban rail transit, it is necessary to analyze the mechanical characteristics of the U-beam, which is particularly important for the cross-section optimization design of U-beam. The most basic requirement of bridge design is to ensure bridge safety, applicability and economy. The optimum design can make the best use of the properties of the material, the best coordination of each unit within the unit, and the standard safety degree of each unit. At the same time, the optimal design is an effective way to realize the ultimate goal of design safety and economy by making scientific and reasonable decision for the structural integrity scheme design. Genetic algorithm (GA) is one of the most widely used mathematical methods for cross-section optimization. It is a parallel and efficient way of searching for the whole, which is based on the theory of evolution of survival of the fittest and the theory of biogenetics, and has a wide range of applications. The optimization results are accurate and so on. In this paper, taking the U-beam bridge in a Shanghai rail transit as the engineering background, the finite element analysis software MIDAS CIVIL and the mathematical model calculation software MATLAB are used to optimize the section of the U-shaped beam by genetic algorithm. Using the beam element method to establish a model to study and compare the behavior of U-shaped beams with different cross-sections, the optimized sections which accord with the specifications and satisfy the stress conditions are obtained. The main contents are as follows: (1) by analyzing the stress characteristics of the U-shaped beam, the parameters of the section are determined. For U-beam, the variables that determine the stress characteristics of the structure are beam height, web thickness, bottom plate thickness and prestressed reinforcement area. Four different cross-section parameters determine the cross-section shape of U-shaped beam. It also has different influence on the structure stress. (2) by using the genetic algorithm toolbox, the mathematical model, the objective function, the design variable and the constraint condition are obtained from the practical problems of the engineering itself. In this paper, the manufacturing cost of prestressed U-beam is taken as the objective function, the strength requirement of normal section is taken as the constraint condition, the restriction of structural size and the stress in construction and use stage are taken as the constraint conditions, and the beam height of the section of U-beam is taken as the constraint condition, respectively. The thickness of web plate, the thickness of bottom slab and the area of prestressed reinforcement are the design variables. The optimum section form is obtained by using genetic algorithm to calculate the mathematical model. (3) combining the above data, By using MIDAS CIVIL software, the cross-section before and after optimization is modeled by the beam element method, and the stress characteristics of the section under different parameters are compared and calculated. The optimum section is obtained by comparison, and the optimized section form is analyzed after checking and calculating.
【学位授予单位】:山东建筑大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U442.5
【相似文献】
相关期刊论文 前10条
1 张文修,梁怡;遗传算法的数学基础[J];西安交通大学学报;2000年10期
2 杨艳丽,史维祥;一种新的优化算法—遗传算法的设计[J];液压气动与密封;2001年02期
3 王毅,曹树良;遗传算法在并联水泵系统运行优化中的应用[J];流体机械;2003年10期
4 赵义红,李正文,何其四;生物信息处理系统遗传算法探讨[J];成都理工大学学报(自然科学版);2004年05期
5 李凡,黄数林,张东风;一种改进的多倍体遗传算法[J];华中科技大学学报(自然科学版);2005年01期
6 韦雪洁;黎明;刘高航;田贵超;;注入式的遗传算法的分析与研究[J];南昌航空工业学院学报(自然科学版);2006年01期
7 阎纲;;遗传算法及其仿真[J];湖南工程学院学报(自然科学版);2006年04期
8 ;遗传算法[J];电网与清洁能源;2008年10期
9 吴玫;陆金桂;;遗传算法的研究进展综述[J];机床与液压;2008年03期
10 李培植;肖利明;于静涛;;基于遗传算法的结构优化方法[J];公路交通科技(应用技术版);2008年08期
相关会议论文 前10条
1 陈家照;廖海涛;张中位;罗寅生;;一种改进的遗传算法及其在路径规划中的应用[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
2 李国云;刘颖;薛梅;邬志敏;;遗传算法在高温空冷冷凝器优化设计中的应用[A];第五届全国制冷空调新技术研讨会论文集[C];2008年
3 王志军;李守春;张爽;;改进的遗传算法在反演问题中的应用[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(上册)[C];2001年
4 任燕翔;姜立;刘连民;从滋庆;;改进遗传算法在三维日照方案优化中的应用[A];工程三维模型与虚拟现实表现——第二届工程建设计算机应用创新论坛论文集[C];2009年
5 韩娟;;遗传算法概述[A];第三届河南省汽车工程科技学术研讨会论文集[C];2006年
6 庞国仲;王元西;;基于遗传算法控制步长的定性仿真方法[A];'2000系统仿真技术及其应用学术交流会论文集[C];2000年
7 张忠华;杨淑莹;;基于遗传算法的聚类设计[A];全国第二届信号处理与应用学术会议专刊[C];2008年
8 何翠红;区益善;;遗传算法及其在计算机编程中的应用[A];1995年中国智能自动化学术会议暨智能自动化专业委员会成立大会论文集(下册)[C];1995年
9 靳开岩;张乃尧;;几种实用遗传算法及其比较[A];1996年中国智能自动化学术会议论文集(下册)[C];1996年
10 王宏刚;曾建潮;李志宏;;摄动遗传算法[A];1996年中国智能自动化学术会议论文集(下册)[C];1996年
相关重要报纸文章 前1条
1 林京;《神经网络和遗传算法在水科学领域的应用》将面市[N];中国水利报;2002年
相关博士学位论文 前10条
1 Amjad Mahmood;半监督进化集成及其在网络视频分类中的应用[D];西南交通大学;2015年
2 李险峰;基于改进遗传算法的汽车装配生产线平衡问题研究[D];北京科技大学;2017年
3 周辉仁;递阶遗传算法理论及其应用研究[D];天津大学;2008年
4 郝国生;交互式遗传算法中用户的认知规律及其应用[D];中国矿业大学;2009年
5 侯格贤;遗传算法及其在跟踪系统中的应用研究[D];西安电子科技大学;1998年
6 马国田;遗传算法及其在电磁工程中的应用[D];西安电子科技大学;1998年
7 唐文艳;结构优化中的遗传算法研究和应用[D];大连理工大学;2002年
8 周激流;遗传算法理论及其在水问题中应用的研究[D];四川大学;2000年
9 刘冀成;基于改进遗传算法的生物电磁成像与磁场聚焦应用研究[D];四川大学;2005年
10 袁丽华;基于物种进化的遗传算法研究[D];南京航空航天大学;2009年
相关硕士学位论文 前10条
1 张英俐;基于遗传算法的作曲系统研究[D];山东师范大学;2006年
2 钟海萍;原对偶遗传算法与蚁群算法的一种融合算法[D];暨南大学;2013年
3 李志添;模糊遗传算法与资源优化配置的预测控制[D];华南理工大学;2015年
4 王琳琳;新型双层液压轿运车车厢的设计研究[D];上海工程技术大学;2015年
5 李海全;基于遗传算法的建筑体形系数及迎风面积比优化方法研究[D];华南理工大学;2015年
6 彭骞;基于遗传算法的山区高等级公路纵断面智能优化方法研究[D];昆明理工大学;2015年
7 周玉林;基于小波分析和遗传算法的配电网故障检测[D];昆明理工大学;2015年
8 郭颂;基于粗糙集和遗传算法的数字管道生产管理系统研究[D];昆明理工大学;2015年
9 吴南;数值逼近遗传算法的研究应用[D];华南理工大学;2015年
10 于光帅;一类优化算法的改进研究与应用[D];渤海大学;2015年
,本文编号:2143923
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2143923.html