当前位置:主页 > 科技论文 > 路桥论文 >

超高性能轻型组合桥面铺装结构弯拉受力性能研究

发布时间:2018-07-25 14:09
【摘要】:疲劳开裂和铺装易损一直是大跨径正交异性钢桥面铺装面临的两大世界难题,为解决这两个难题,作者所在团队提出了钢桥面“CRRPC-TPO”超高性能轻型组合桥面铺装体系。本文旨在对该新型铺装体系的弯拉非线性全过程进行分析,主要研究成果如下:(1)为进行“钢板-CRRPC-TPO”复合梁的弯拉非线性数值模拟,通过对材料各种本构模型的分析与相关的试验研究,获得了与该新型铺装结构相符合的钢材、RPC、TPO的应力-应变本构方程;(2)考虑复合梁各组成材料的非线性本构关系,根据内力平衡条件,编制复合梁正截面的数值模拟计算分析程序,获得了其弯矩-曲率关系曲线及荷载-挠度关系曲线;进行复合梁试件的弯拉试验,将试验所得荷载-挠度曲线与数值模拟的结果进行对比,结果显示数值仿真模拟荷载-挠度曲线与试验结果具有相同的发展规律,各特征点的数值吻合良好;(3)观察复合梁弯拉试验过程中的变形全过程,测试其裂缝发展情况,结果表明:弹性阶段复合梁各层材料处于弹性变形阶段,无裂缝生成;裂缝稳定扩展阶段CRRPC基体出现微裂缝;裂缝失稳扩展阶段微裂缝失稳扩展为宏观裂缝;复合梁破坏阶段裂主裂缝两端的CRRPC及TPO几乎变成刚体转动,裂缝宽度的记录无实际意义;(4)建立马房大桥的有限元局部模型进行计算,并将计算结果与实际的检测结果进行了对比分析,结果表明两者应力值与变形值吻合良好,采用该有限元局部模型进行计算得到的数据具有一定的参考意义;在此基础上,建立本铺装结构的有限元局部模型,采用规范荷载进行数值计算,获得了钢桥面铺装层在车轮荷载作用下的最不利荷位及对应的应力值,CRRPC、TPO顶面的最大拉应力分别为9.09Mpa、4.6Mpa;(5)采用材料力学的方法,对复合梁弯拉受力过程中的弹性阶段进行力学计算,得到铺装各层在弹性极限荷载作用下的最大应力值,计算结果显示CRRPC、TPO顶面最大拉应力分别为有限元模型计算结果的3.11倍、2.9倍,证明了该新型铺装体系的可靠性,且具有足够的安全储备。
[Abstract]:Fatigue cracking and pavement vulnerability are the two major world problems faced by long-span orthotropic steel deck pavement. In order to solve these two problems, the authors put forward a lightweight deck pavement system with "CRRPC-TPO" ultra-high performance. The purpose of this paper is to analyze the nonlinear bending process of the new paving system. The main results are as follows: (1) in order to simulate the bending and tensile nonlinearity of "steel plate CRRPC-TPO" composite beam, The stress-strain constitutive equations of RPC-TPO in accordance with the new paving structure are obtained through the analysis of various constitutive models of materials and related experimental studies. (2) considering the nonlinear constitutive relations of the materials of composite beams, According to the equilibrium condition of internal force, the numerical simulation and analysis program of normal section of composite beam is compiled, the curve of moment curvature relation and load-deflection relation is obtained, and the bending and tensile test of composite beam is carried out. The load-deflection curve obtained from the test is compared with the results of numerical simulation. The results show that the load-deflection curve of numerical simulation has the same development law as the test result. (3) observing the whole deformation process of composite beam during bending and tensile test and testing the development of cracks. The results show that the materials of each layer of composite beam are in elastic deformation stage and no cracks are formed in elastic stage. Microcracks appeared in CRRPC matrix during stable crack propagation, microcracks spread to macro cracks in fracture instability propagation stage, CRRPC and TPO at both ends of main cracks of composite beams almost turned into rigid body rotation during failure stage. The recording of crack width has no practical significance. (4) the finite element local model of Mafang Bridge is established and the results are compared with the actual test results. The results show that the stress and deformation values agree well with each other. On the basis of this, the local finite element model of the pavement structure is established, and the numerical calculation is carried out by the code load. The maximum tensile stress of the top surface of CRRPC-TPO is 9.09 Mpa-4.6Mpa. (5) the mechanical calculation of elastic stage of composite beam during bending and tensile loading is carried out by the method of material mechanics, and the maximum tensile stress of the top surface of CRRPC-TPO is 9.09 Mpa-4.6Mpa.Using the method of material mechanics, the most unfavorable loading position and the corresponding stress value of steel bridge deck pavement under wheel load are obtained. The maximum stress of each layer of pavement under the action of elastic limit load is obtained. The calculation results show that the maximum tensile stress of the top surface of CRRPCO TPO is 3.11 times or 2.9 times of the calculated results of the finite element model, which proves the reliability of the new paving system. And has sufficient safety reserve.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U443.33

【参考文献】

相关期刊论文 前10条

1 周远智;朱金波;邓晓红;;钢箱-混凝土组合拱桥受载全过程分析[J];交通科技;2015年02期

2 周铮;陈强;孙杨勇;尹昌宇;;新型超薄抗滑磨耗层钢桥面铺装的试验研究[J];中外公路;2015年01期

3 李嘉;冯啸天;邵旭东;王懿;曹君辉;;STC钢桥面铺装新体系的力学计算与实桥试验对比分析[J];中国公路学报;2014年03期

4 张辉;潘友强;张健;朱雷;;大跨径环氧沥青混凝土钢桥面铺装裂缝修复材料性能试验研究[J];公路;2013年12期

5 李炜农;陈先华;;钢桥面铺装层间界面力学特性研究[J];山西建筑;2013年32期

6 竹晓华;;钢桥面铺装层间抗剪性能室内试验研究[J];科学技术与工程;2013年27期

7 周艳;李佩林;;双层SMA钢桥面铺装复合梁疲劳试验研究[J];公路与汽运;2013年03期

8 王春生;付炳宁;张芹;冯亚成;;正交异性钢桥面板足尺疲劳试验[J];中国公路学报;2013年02期

9 王民;张华;;钢桥面铺装特点及设计要求综合分析[J];世界桥梁;2013年01期

10 王春生;付炳宁;张芹;冯亚成;;正交异性钢桥面板横隔板挖孔型式[J];长安大学学报(自然科学版);2012年02期

相关博士学位论文 前1条

1 陈团结;大跨径钢桥面环氧沥青混凝土铺装裂缝行为研究[D];东南大学;2006年

相关硕士学位论文 前1条

1 庞立果;大跨径正交异性钢箱梁桥面铺装复合梁疲劳试验研究[D];长安大学;2008年



本文编号:2144060

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2144060.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户31c81***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com