当前位置:主页 > 科技论文 > 路桥论文 >

驾驶人风险引力模型优化及应用研究

发布时间:2018-08-02 20:08
【摘要】:驾驶人注意特性是影响行车安全的主要因素。风险交通情境下的风险引力是驾驶人注意特性的量化指标之一,研究风险引力模型的构建及其应用,对预防和减少交通事故,具有重要意义。本文是基于课题组前期建立的风险引力模型基础上的模型优化和应用研究,以有、无经验的驾驶人为基础研究人群,基于性别、年龄、驾龄、不同文化程度为变量进行分组分析其不同人群注意特性的差异性。首先,对驾驶人注意特性及相关理论进行分析。从影响驾驶人注意特性的主要因素进行分析,结合驾驶人注意广度、注意视距、行车速度、驾驶人自身因素等相关因素与驾驶人注意特性之间的关系,分析驾驶人注意及其影响因素对行车安全的影响,为风险引力模型修正选择合理的参数奠定的基础。其次,风险引力模型的优化、改进。对现有风险引力模型进行分析,分析模型存在的问题,个别参数的不合理性(如风险属性的模型)和常数假设设置过多计算不便等。针对存在的问题,结合驾驶人注意特性、交通冲突、风险的风险度、以及心理场理论的作用,对驾驶人属性函数表达式、风险属性表达式、风险引力模型选择合理的参数并进行修正。通过分析可知,决定风险属性的是风险存在的风险度、冲突度、速度以及其所在位置等;决定驾驶人属性的是驾驶人个性、速度、注意角度、风险与驾驶人之间的距离及其风险对驾驶人感知强度等;而驾驶人属性和风险属性是表征风险引力模型的主要因素。通过量化以上决定风险引力大小的因素,以风险引力来表征驾驶人注意特性。最后,风险引力模型的验证及应用分析。一是实验设计验证法,对风险环境.的设计从简单到复杂,从单一风险到多风险,通过其注意行为及操作行为分析不同群体的注意特性。实验表明,风险情景越复杂,相对负荷会越重,驾驶难度越大。二是采用数据分析法,基于触发区、冲突区域及眼动行为提取模拟驾驶实验数据和眼动数据,结合风险引力模型,对驾驶人不同群体注意特性进行量化分析。结果表明,驾驶人与风险距离越近,风险引力值越大,注意程度越高,越不利于行车;且高驾龄驾驶人比低驾龄驾驶人注意能力强,男性驾驶人比女性驾驶人注意力能力强等。论文对风险引力的研究成果,为驾驶人注意特性的研究提供新的量化方法,对提高驾驶人的行车安全、减少交通事故具有现实意义。
[Abstract]:The driver's attention characteristic is the main factor which affects the driving safety. Risk gravity is one of the quantitative indexes of drivers' attention characteristics. It is of great significance to study the construction and application of risk gravity model to prevent and reduce traffic accidents. This paper is based on the model optimization and application research based on the risk gravity model established by the research group, based on the study of people with and without experience, based on gender, age, driving age. The differences of attention characteristics among different population groups were analyzed by using different education level as variables. First of all, the driver attention characteristics and related theories are analyzed. Based on the analysis of the main factors affecting the attention characteristics of the driver, the relationship between the attention span of the driver, the distance of sight, the driving speed, the driver's own factors and the attention characteristics of the driver is analyzed. This paper analyzes the influence of driver's attention and its influencing factors on driving safety, and lays a foundation for the modification of risk gravity model and the selection of reasonable parameters. Secondly, the risk gravity model is optimized and improved. The existing risk gravitation model is analyzed, the problems existing in the model, the irrationality of individual parameters (such as the model of risk attribute) and the setting of constant hypothesis are analyzed. Aiming at the existing problems, combining the characteristics of driver's attention, traffic conflict, risk degree of risk, and the function of psychological field theory, the function expression of driver's attribute, the expression of risk attribute, The risk gravity model selects reasonable parameters and modifies them. The risk attributes are determined by the degree of risk, the degree of conflict, the speed and the location of the risk, and the driver's personality, speed, and angle of attention determine the attributes of the driver. The distance between the risk and the driver and the perceived intensity of the risk to the driver, while the driver's attribute and the risk attribute are the main factors to characterize the risk gravity model. By quantifying the factors that determine the magnitude of risk gravity, the risk gravity is used to characterize the attention of the driver. Finally, the validation and application analysis of risk gravity model are given. The first is the experimental design validation method, to the risk environment. From simple to complex, from single risk to multiple risk, the attention characteristics of different groups are analyzed by their attention behavior and operational behavior. The experiment shows that the more complex the risk scenario, the heavier the relative load and the more difficult the driving. Secondly, based on trigger region, conflict area and eye movement behavior, the simulated driving experiment data and eye movement data are extracted by using data analysis method. Combined with risk gravity model, the attention characteristics of different groups of drivers are analyzed quantitatively. The results showed that the closer the distance between the driver and the risk, the greater the risk gravity, the higher the attention, the more disadvantageous the driving, and the stronger the attention ability of the driver with high driving age is than that of the driver of low driving age, and the attention ability of male driver is stronger than that of female driver. The research results of risk gravitation in this paper provide a new quantitative method for the study of attention characteristics of drivers. It is of practical significance to improve the driving safety of drivers and reduce traffic accidents.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.254

【参考文献】

相关期刊论文 前10条

1 程文冬;付锐;袁伟;刘卓凡;张名芳;刘通;;驾驶人注意力分散的图像检测与分级预警[J];计算机辅助设计与图形学学报;2016年08期

2 张军锋;刘澜;;基于FSDT的驾驶员危险感知能力研究[J];安全与环境学报;2014年03期

3 夏如艇;范剑;;交通状况下驾驶员视觉注意特性的仿真[J];汽车工程;2013年09期

4 刘博华;孙立山;荣建;;基于眼动参数的驾驶员标志视认行为研究[J];交通运输系统工程与信息;2011年04期

5 范东凯;曹凯;;驾驶员风险认知能力对交通安全的影响[J];中国安全科学学报;2010年11期

6 郭孜政;张殿业;陈崇双;付雷;;驾驶员注意力量化转换模型研究[J];武汉理工大学学报(交通科学与工程版);2010年04期

7 郭孜政;陈崇双;陈亚青;;高负荷驾驶任务下驾驶员注意力状态概率模型[J];西南交通大学学报;2009年04期

8 裴玉龙;于涛;;车道变换进程中驾驶员视点转移特性研究[J];交通信息与安全;2009年02期

9 李辉;景国勋;贾智伟;段振伟;;驾驶员注意力分配定量方法研究[J];中国安全科学学报;2009年02期

10 魏玉桂;刘援朝;;机动车驾驶员注意力的调查研究[J];山东交通学院学报;2007年03期

相关硕士学位论文 前6条

1 莫海萍;多风险交通情景下的驾驶人风险引力模型构建研究[D];昆明理工大学;2016年

2 李胜江;驾驶人视觉注意力分散检测方法研究[D];吉林大学;2015年

3 张红强;基于驾驶模拟器的情境风险度评价[D];昆明理工大学;2014年

4 郑东鹏;驾驶人危险感知及影响因素研究[D];上海交通大学;2013年

5 相文森;城市冰雪道路交通事故成因及发生机理研究[D];哈尔滨工业大学;2010年

6 张茜;驾驶经验与人格特征对驾驶员危险感受影响的研究[D];辽宁师范大学;2010年



本文编号:2160585

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2160585.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e7b65***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com