广州地铁盾构施工端头预加固合理范围研究及应用
[Abstract]:The shield construction has the advantages of high mechanization, fast driving speed, high construction safety and small influence on the surrounding environment. It is widely used in the construction of underground tunnels in urban subway, electric power, municipal and other underground tunnels. During the construction of shield tunneling, shield construction and construction are the key links of the whole tunnel construction. If improper construction, it may happen. In order to avoid a series of problems that may occur during the initiation and construction of the shield, it is necessary to reinforce the end soil in order to ensure the smooth start and the timely penetration of the shield tunnel. This article takes the Ma'anshan Park of Huadu Square Station in line nine of Guangzhou rail transit to Ma'anshan Park The subway tunnel is the engineering background. Combining engineering practice, engineering experience, theoretical analysis and numerical simulation, the reinforcement method, reinforcement theory and numerical simulation of metro tunnel shield starting station (Ma'anshan Park Station) end soil reinforcement are analyzed and studied. The concrete work contents are as follows: (1) through The practice of the metro tunnel project in Guangzhou rail transit is to understand the general situation of the shield construction project and the reinforcement method and construction technology adopted in this project, and to understand the advantages and disadvantages of all kinds of end reinforcement methods and their applicable conditions on this basis. The effective control of the safety of the shield construction of the subway tunnel is made. (2) on the basis of the classical strength theory, through the establishment of the mechanics and mathematical model of the end reinforcement soil, the theoretical solution of the longitudinal and transverse reinforcement range of the end soil body is derived by using the elastic mechanics, the higher soil mechanics and the higher mathematics method, and the work of the Ma'anshan Park station is worked out. The practical case analysis is carried out to provide theoretical reference for the actual construction of the project. (3) using the three-dimensional finite difference numerical simulation software FLAC3D, the numerical simulation of the end reinforcement range is carried out from the displacement field, the failure field and the stress field under the most unfavorable conditions of the shield opening door. First, the lateral reinforcement scope is guaranteed to be 3M, and the longitudinal reinforcement is long. The degree of 3M, 6m, 10m, 15m is simulated in order to determine the reasonable numerical solution of the longitudinal reinforcement. Secondly, the reasonable longitudinal reinforcement range is guaranteed. The lateral reinforcement range is taken in order to simulate the range of 1m, 2m, 3M and 4m on both sides of the shield, so as to determine the reasonable lateral reinforcement scope, and provide some reference suggestions for the engineering construction and the theoretical research. The research results are as follows: (1) the shield construction project in Ma'anshan Park station is in the high water pressure sand layer, in the upper soft and hard stratum, the stratum has the characteristics of large permeability coefficient, poor construction parameter control, poor bearing capacity of the formation and so on. The three heavy pipe high pressure jet grouting pile reinforcement method is suitable for sand soil, sand gravel, silt and soft clay soil and so on. The rotary jet pile has high strength, good durability, simple operation, good irrigability, wide material source, low price and so on. It is suitable for soil reinforcement of the shield construction project of Ma'anshan Park station. (2) the theory of elastic thin plate, the theory of soil slip instability, the related knowledge of the limit equilibrium theory of soil disturbance and the reinforcement of the end of the loose circle By structural analysis, the corresponding mechanical calculation model is set up, and the theoretical solution of the reinforcement range of the end soil is derived through the elastic mechanics, the knowledge of higher soil mechanics and the analytical method of higher mathematics, and the example of the Ma'anshan Park Station project is analyzed. The results show that the difference between the longitudinal and the two sides of the tunnel is small, compared with the actual reinforcement. There is a deviation in the calculation of the sandy soil and the carbonaceous ash at the bottom of the arch at the bottom of the tunnel. The main reason may be that there is no consideration of the actual geological conditions and the influence of the soil reinforcement. (3) it is known from the numerical simulation results that the displacement field, the broken field and stress field, and the water stop requirements of the shield originating from the different longitudinal and transverse reinforcement range are considered comprehensively. Under the premise, combined with the actual engineering geological conditions and theoretical research results, it is finally determined that the soil reinforcement at the beginning end of the shield is 10m, the length of lateral reinforcement is 3M, the depth direction is reinforced at the top of the tunnel, and 5m is reinforced at the top of the tunnel. The construction quality can be satisfied as long as the quality of the project is ensured. Strength and stability requirements. (4) this study has a certain reference and application value for the shield construction of subway tunnels in Guangzhou or other similar high water pressure sand soil, soft and hard stratum construction conditions.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U231.3;U455.43
【相似文献】
相关期刊论文 前10条
1 刘浔;范云中;丰土根;陆跃;;无锡地铁盾构始发风险分析[J];水利与建筑工程学报;2013年03期
2 翟志国;;城市大直径泥水盾构始发技术浅谈[J];科技资讯;2009年04期
3 于建军;;地铁盾构始发负环管片组装及拆除施工技术[J];铁道技术监督;2010年03期
4 冯义;陈寿根;王稼祥;;深圳地铁五号线盾构始发掘进技术研究[J];建筑机械化;2010年08期
5 吕传田;翟志国;苏清贵;;北京铁路地下直径线盾构始发技术[J];中国工程科学;2010年12期
6 丁烈云;李炜明;陈晓阳;;武汉地铁盾构始发数值计算与监测分析[J];铁道工程学报;2011年03期
7 滕长浪;;盾构始发与到达风险分析[J];科技资讯;2011年09期
8 杜建林;魏鑫;;盾构始发端头连续墙成槽过程卡锤事故的处理[J];广州建筑;2011年01期
9 潘远丽;;浅埋全断面动水砂层盾构始发方法探讨[J];甘肃水利水电技术;2011年05期
10 齐敦典;;无后置出土口的盾构始发方案[J];建筑技术;2012年02期
相关会议论文 前10条
1 栾文伟;肖宗莉;吴亮;;盾构始发过程中对径向土体扰动范围的研究[A];2011中国盾构技术学术研讨会论文集[C];2011年
2 赵运臣;;盾构始发与到达方法综述[A];中国土木工程学会第十三届年会暨隧道及地下工程分会第十五届年会论文集[C];2008年
3 陶芳良;;盾构始发受阻及处理技术[A];第二届隧道掘进机(盾构、TBM)专业委员会第一次学术研讨会暨中铁隧道集团城市盾构项目管理、施工技术、设备维保交流会论文集[C];2011年
4 胡俊;;盾构始发端头化学加固范围的数值模拟研究[A];第十二届海峡两岸隧道与地下工程学术与技术研讨会论文集[C];2013年
5 高家瑞;贾建兵;;长沙地铁隧道小曲线盾构始发技术[A];第二届隧道掘进机(盾构、TBM)专业委员会第一次学术研讨会暨中铁隧道集团城市盾构项目管理、施工技术、设备维保交流会论文集[C];2011年
6 杨琼鹏;;软弱地层盾构始发及到达施工技术[A];第二届隧道掘进机(盾构、TBM)专业委员会第一次学术研讨会暨中铁隧道集团城市盾构项目管理、施工技术、设备维保交流会论文集[C];2011年
7 翟志国;黄学军;;城市大直径泥水盾构始发关键技术[A];第二届隧道掘进机(盾构、TBM)专业委员会第一次学术研讨会暨中铁隧道集团城市盾构项目管理、施工技术、设备维保交流会论文集[C];2011年
8 李治国;周明发;王海;王书雄;李明;;海河共同沟隧道盾构始发段注浆技术[A];自主创新与持续增长第十一届中国科协年会论文集(2)[C];2009年
9 张则忠;张自太;;广州轨道交通6号线某区间全断面砂层泥水加压平衡盾构始发技术[A];2011中国盾构技术学术研讨会论文集[C];2011年
10 路刚;;盾构始发端头土体加固施工技术[A];城市地下空间开发与地下工程施工技术高层论坛论文集[C];2004年
相关重要报纸文章 前3条
1 王馨 记者 赵丹 王小刚;地铁一号线首台过江盾构始发[N];南昌日报;2012年
2 通讯员 邱开祯 李欣洁;厦门市轨道交通首台盾构始发[N];中国铁道建筑报;2014年
3 赵永生;盾构始发侧壁支护体系创新[N];中国建设报;2014年
相关博士学位论文 前2条
1 赵宝虎;冲击问题实验应力分析与盾构始发反力架监测[D];天津大学;2009年
2 胡俊;高水压砂性土层地铁大直径盾构始发端头加固方式研究[D];南京林业大学;2012年
相关硕士学位论文 前6条
1 宋旱云;深埋盾构始发洞口土体稳定性及施工方法研究[D];北京建筑大学;2015年
2 柳林;围护结构及土层在盾构始发过程中的力学行为研究[D];石家庄铁道大学;2015年
3 夏洋洋;广州地铁盾构施工端头预加固合理范围研究及应用[D];兰州交通大学;2015年
4 李博;盾构始发对围岩稳定性影响分析[D];安徽建筑大学;2014年
5 殷黎明;砂卵石地层盾构始发端头土体加固研究[D];中南大学;2013年
6 石研玉;小断面泥水越江盾构始发与接收关键技术研究[D];西南交通大学;2014年
,本文编号:2161997
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2161997.html