城市交通流短时预测模型研究
[Abstract]:With the improvement of economic level, the reduction of family burden and the increasing purchase of private cars, traffic congestion is a major transportation problem that puzzles China and even the international community. How to relieve the pressure of traffic becomes an urgent problem to be solved in our country. Obtaining real-time and accurate traffic flow is the basis of traffic guidance and control, and the key to solve various traffic problems. Firstly, based on the analysis of the current situation of short-term traffic flow prediction at home and abroad, the characteristics of urban traffic flow are analyzed, and the existing forecasting methods are summarized. A simulation model of Kalman filter traffic flow prediction based on phase space reconstruction is proposed. In order to obtain the characteristics hidden in the one-dimensional time series of short-time traffic flow, the one-dimensional time series is reconstructed, and the delay time and embedding dimension of the spatial reconstruction are determined by using CnC algorithm. The phase points obtained by phase space reconstruction are used to describe the state space which is composed of state vectors, and then the prediction of the next moment of the measured data and the correction of the future development law of the phase points are carried out based on the Kalman filter theory. On the basis of these two theories, the short-term traffic flow prediction model is established, and the simulation is carried out according to the actual traffic situation of a certain section of the road. Secondly, the support vector machine (SVM) SVM theory is studied and analyzed in detail, and the kernel function is determined according to the prediction object in this paper. The wavelet denoising theory is introduced before the data training to overcome the shortcomings of the method, according to the characteristics of several kinds of wavelets. In order to improve the accuracy of prediction, the SVM prediction model based on parameter optimization is constructed in order to improve the accuracy of prediction and optimize the parameters of the model by means of ant colony optimization algorithm. The availability and practicability of the algorithm are verified by simulation and analysis of actual traffic flow. Finally, in order to compare and analyze, the constructed Kalman filter traffic flow prediction simulation model based on phase space reconstruction and the SVM short-time traffic flow prediction model based on parameter optimization are simulated. The simulation results show that the parameter optimization SVM model based on intelligent algorithm can improve the prediction accuracy of traffic flow more effectively. It is proved that this intelligent combination algorithm can achieve better prediction results.
【学位授予单位】:河南理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U491.14;TP18
【相似文献】
相关期刊论文 前10条
1 偶昌宝,俞亚南;短时交通流预测的多层递阶方法[J];城市道桥与防洪;2004年05期
2 高丽梅;高鹏;陈俊波;;数据融合技术在短时交通流预测中的应用[J];交通科技;2010年S1期
3 唐世星;;改进的支持向量机算法在短时交通流预测中的应用[J];承德石油高等专科学校学报;2012年01期
4 王娇;李军;;最小最大概率回归机在短时交通流预测中的应用[J];公路交通科技;2014年02期
5 贺国光,李宇,马寿峰;基于数学模型的短时交通流预测方法探讨[J];系统工程理论与实践;2000年12期
6 宗春光,宋靖雁,任江涛,胡坚明;基于相空间重构的短时交通流预测研究[J];公路交通科技;2003年04期
7 杨世坚,贺国光;基于模糊C均值聚类和神经网络的短时交通流预测方法[J];系统工程;2004年08期
8 王进;史其信;;短时交通流预测模型综述[J];中国公共安全(学术卷);2005年01期
9 杨芳明;朱顺应;;基于小波的短时交通流预测[J];重庆交通学院学报;2006年03期
10 邓志龙;李全;陈茜;;基于灰色系统理论的短时交通流预测[J];公路交通技术;2006年01期
相关会议论文 前4条
1 郑德署;何世伟;许旺土;;分形理论在短时交通流预测中的应用[A];2008第四届中国智能交通年会论文集[C];2008年
2 唐丽娜;张卫华;;短时交通流预测方法的比较研究[A];2007第三届中国智能交通年会论文集[C];2007年
3 于建玲;商朋见;关积珍;;改进的相空间重构方法在短时交通流预测中的应用[A];2008第四届中国智能交通年会论文集[C];2008年
4 杨锦伟;肖新平;郭金海;;基于灰关联与少数据云推理的短时交通流预测[A];第25届全国灰色系统会议论文集[C];2014年
相关博士学位论文 前1条
1 姚智胜;基于实时数据的道路网短时交通流预测理论与方法研究[D];北京交通大学;2007年
相关硕士学位论文 前10条
1 高为;基于数据挖掘和数据融合的短时交通流预测研究[D];重庆交通大学;2011年
2 齐霖;基于支持向量机回归的短时交通流预测与系统实现[D];东北大学;2013年
3 邱世崇;基于时空特性的城市道路短时交通流预测研究[D];重庆交通大学;2015年
4 沈小峰;交通流量短时预测的算法研究[D];浙江工业大学;2015年
5 江小燕;短时交通流预测方法研究[D];扬州大学;2015年
6 杨慧慧;城市交通流短时预测模型研究[D];河南理工大学;2015年
7 尹振兴;“机理+辨识”策略在短时交通流预测中多种结果合成[D];天津大学;2008年
8 姜敏华;基于车行转弯比例稳定假设的短时交通流预测[D];上海交通大学;2008年
9 张蕊;城市道路短时交通流预测[D];五邑大学;2008年
10 韩超;短时交通流预测的研究[D];北方工业大学;2012年
,本文编号:2162600
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2162600.html