基于热点应力法的正交异性桥面板的疲劳性能研究
[Abstract]:Orthotropic steel bridge panels are welded by vertical, transverse stiffened ribs and deck plates, which have the advantages of light weight, large ultimate bearing capacity, short construction period and beautiful structure, so they are widely used at home and abroad. Middle span bridge. However, the structure of orthotropic steel bridge is complicated, the length of weld seam is large, the residual stress caused by welding, the defects of the structure itself, the quality of construction and the repeated action of bearing wheel load directly, and so on. Orthotropic steel bridge panels are prone to fatigue damage. At present, nominal stress method is widely used in fatigue checking calculation of steel bridges in many countries. This method is suitable for simple structure. The effect on complex orthotropic deck slab structure is not ideal. When fatigue life is expressed by nominal stress, the result is very discrete. It is difficult to give accurate S-N curves. Compared with the nominal stress method, the hot spot stress method is more suitable for complex structures, and has gradually become one of the important methods of weld fatigue analysis, but its application on orthotropic steel bridge face is not much. In this paper, the application of hot spot stress method to fatigue analysis of orthotropic steel bridge face weld is studied. In this paper, based on the ANSYS modeling of Sutong Bridge deck, the unfavorable loading position of each typical weak part of the bridge is analyzed, and the stress concentration in the weak part is determined. The method of modeling and loading analysis is provided for the finite element analysis of orthotropic steel bridge panel. The welding seam of orthotropic steel bridge face plate is complicated. In this paper, four hot spots are selected, that is, R D (Rib-to-Deck, longitudinal rib and panel joint), R D welding toe, RF (Rib-to-Floorbea m) for R D longitudinal rib welding toe. The influence of finite element mesh on stress value and stress distribution stability in hot extrapolation region is studied, and the appropriate finite element mesh size for modeling and analysis in practical engineering is suggested. In the case of hot spot at the weld toe, there are some relevant calculation methods for the hot spot stress surface extrapolation in each specification, but the stress concentration at the welding root of the bridge deck plate is more serious and the cracks are more destructive. For such hot spot in the solder root, the existing specifications are still lack of relevant provisions. In this paper, the extrapolation method of hot spot stress surface is deduced for the four hot spots selected, and compared with the existing codes, the results of the three hot spot locations of welding toe are in good agreement with the code. But they each apply different norms. According to the analysis of the root position of Rd panel welding, the conclusion is similar to that of the weld toe region, but the extrapolation point position is quite different from the existing specification, so it can not be used to calculate the hot spot stress of R D panel welding root. At the same time, the variation of elastic modulus of welding seam has no effect on the extrapolation method of hot spot stress surface in each hot spot of orthotropic steel bridge panel, so the simple method of welding seam and base metal can be used in engineering practice. Finally, by using the formula for calculating hot spot stress of orthotropic steel bridge panel, several basic parameters of orthotropic steel bridge face plate are analyzed. It is found that the thickness of orthotropic steel bridge panel has the greatest influence on hot spot stress. Therefore, the fatigue life of orthotropic steel bridge panel can be improved by increasing the thickness of the plate to reduce the stress of hot spot.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U441.4
【相似文献】
相关期刊论文 前10条
1 刘志文;辛亚兵;陈政清;;铝合金桥面板合理断面形式拓扑分析和优化[J];湖南大学学报(自然科学版);2010年01期
2 万水,胡红,周荣星;复合材料桥面板的应用和研究进展[J];公路交通科技;2004年08期
3 叶晓华,胡红,冯勋伟;纤维增强复合材料在桥面板中的应用[J];上海纺织科技;2004年04期
4 郝翠;曹新垒;;钢混组合桥面板在公铁两用桥维修工程中的应用[J];工程与建设;2013年06期
5 万水,胡红,周荣星;FRP桥面板结构特点与实例[J];南京理工大学学报(自然科学版);2005年01期
6 殷惠光;王景全;李志刚;;FRP桥面板结构特点及设计方法研究[J];常州工学院学报;2006年01期
7 张彦芬,张文秀;混凝土预制桥面板施工裂缝成因及处理措施[J];河北水利;2005年05期
8 胡宗文;王元清;石永久;李吉勤;张振学;;天津海河蚌埠桥铝合金桥面板静力承载性能试验研究[J];建筑科学;2009年01期
9 刘金贵;刘东风;;大型公路钢箱梁正交异性桥面板工地接头连接新工艺[J];交通世界(建养.机械);2008年06期
10 朱坤宁;万水;刘玉擎;;FRP桥面板静载试验研究及分析[J];工程力学;2010年S1期
相关会议论文 前1条
1 朱坤宁;万水;刘玉擎;;FRP桥面板静载试验研究及分析[A];第18届全国结构工程学术会议论文集第Ⅱ册[C];2009年
相关重要报纸文章 前1条
1 中冶集团建筑研究总院 张大厚;复合材料在桥梁上的应用[N];中国建材报;2008年
相关硕士学位论文 前8条
1 胡鹏;基于热点应力法的正交异性桥面板的疲劳性能研究[D];东南大学;2015年
2 姚晓荣;应力叠合木桥面板及其对接接头折减系数研究[D];长安大学;2012年
3 王玉;组合正交异性桥面板的受力行为研究[D];石家庄铁道大学;2013年
4 赵豪俊;波纹钢—钢筋混凝土组合桥面板承载力研究[D];华东交通大学;2012年
5 许加其;波形钢—钢筋混凝土组合桥面板承载力试验研究[D];华东交通大学;2011年
6 霍旭东;钢板—混凝土组合桥面板静力及疲劳性能试验研究[D];西安建筑科技大学;2011年
7 何杨昆;正交异性桥面板疲劳试验模型的数值分析[D];西南交通大学;2013年
8 向利明;福元路大桥主桥吊杆张拉与桥面板铺设关键技术研究[D];长沙理工大学;2013年
,本文编号:2162934
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2162934.html