南昌市短时交通流预测方法研究
[Abstract]:Traffic flow prediction is an important part of intelligent transportation system. The important premise of traffic signal control, route guidance and accident detection is fast and accurate short-time traffic flow prediction. However, the traffic system has the characteristics of high complexity, nonlinearity and uncertainty. It is a complex system composed of people, cars, roads and other objects, making real-time traffic flow. Accurate prediction is one of the hotspots and difficulties in the field of intelligent transportation. However, because of the large amount of traffic flow information, the strong disturbance of uncertain noise signal and the complex topology of urban road network, how to realize the short-term traffic flow prediction of urban road has been hindering the long-term development of intelligent transportation. In order to solve these problems, many forecasting methods have been put forward, but the real-time and accuracy of the prediction results are not ideal because of not considering the influence of uncertain interference signals or the complexity of urban road network on the short-term traffic flow. In this paper, Mallat algorithm is used to decompose and reconstruct the short time traffic flow signal with wavelet transform in order to filter out the strong interference noise signal of the short time traffic flow. This method can improve the speed and precision of the short time traffic flow information preprocessing. In view of the complexity and nonlinear characteristics of traffic flow data, the neural network theory is introduced in this paper. It is an effective method to predict traffic flow in short time by using its good ability to deal with nonlinear problems. In summary, in order to improve the accuracy of short-term traffic flow prediction, in view of the time-varying, complex and nonlinear characteristics of urban road traffic flow, This paper presents a short-term traffic flow combination prediction model based on wavelet denoising and adaptive genetic algorithm to optimize BP neural network. Using wavelet transform, traffic flow can be decomposed into multiple smooth subsequences with different frequencies, and each subsequence can be predicted separately. This method can effectively solve the time-varying, complex and nonlinear problems of the predicted traffic flow. At the same time, the adaptive genetic algorithm has the ability of global searching, and it can solve the defect of neural network, which is easy to fall into the local minimum. The prediction results are compared with those of wavelet neural network method and genetic neural network method. The results show that the average absolute error, mean absolute percentage error and root mean square error of the model are small, and the EC value of the fitting degree is large, which shows the validity of the model in the short-term traffic flow prediction. Accuracy.
【学位授予单位】:华东交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.14
【参考文献】
相关期刊论文 前10条
1 沈国江;王啸虎;孔祥杰;;短时交通流量智能组合预测模型及应用[J];系统工程理论与实践;2011年03期
2 张国强;彭晓明;;自适应遗传算法的改进与应用[J];舰船电子工程;2010年01期
3 陈岳明;萧德云;;基于动态交通分配的路网应急疏散模型[J];清华大学学报(自然科学版);2009年08期
4 孙湘海;刘潭秋;;基于神经网络和SARIMA组合模型的短期交通流预测[J];交通运输系统工程与信息;2008年05期
5 聂佩林;余志;何兆成;;基于约束卡尔曼滤波的短时交通流量组合预测模型[J];交通运输工程学报;2008年05期
6 张玉梅;曲仕茹;温凯歌;;基于混沌和RBF神经网络的短时交通流量预测[J];系统工程;2007年11期
7 张梁斌;周必水;奚李峰;;自适应遗传算法与分形图像压缩结合的新方法[J];计算机应用研究;2006年07期
8 刘学锋;刘联会;;图像Mallat算法边界延拓问题的研究[J];现代电子技术;2006年09期
9 王晓原;刘海红;;基于投影寻踪自回归的短时交通流预测[J];系统工程;2006年03期
10 任子武;伞冶;;自适应遗传算法的改进及在系统辨识中应用研究[J];系统仿真学报;2006年01期
相关博士学位论文 前4条
1 许小可;基于非线性分析的海杂波处理与目标检测[D];大连海事大学;2008年
2 姚智胜;基于实时数据的道路网短时交通流预测理论与方法研究[D];北京交通大学;2007年
3 李星毅;基于相似性的交通流分析方法[D];北京交通大学;2010年
4 陈柳;小波分析和神经网络应用于大气污染预测的研究[D];西安建筑科技大学;2006年
相关硕士学位论文 前4条
1 胡枫;基于马尔科夫模型的短时交通流预测研究[D];南京邮电大学;2013年
2 雷旭东;基于自适应神经网络的车室噪声主动控制系统研究[D];重庆交通大学;2012年
3 丁蕾;面向城市交通控制的短时交通流预测方法研究[D];大连理工大学;2009年
4 吴浩勇;城市快速路交通参数预测方法研究[D];吉林大学;2005年
,本文编号:2201840
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2201840.html