当前位置:主页 > 科技论文 > 路桥论文 >

深部复合地层TBM隧道变形时空演化规律研究

发布时间:2018-09-02 05:32
【摘要】:针对深部复合地层TBM隧道变形时空演化规律问题,本文采用数字照相量测技术和人工制斑方法,研究了隧道变形的时空演化规律;采用FLAC3D数值模拟软件,建立深部复合地层下TBM隧道的三维数值模型,分析了支护形式、埋深、掘进速度、超挖间隙、超前支护强度、支护时机、复合地层对隧道围岩稳定性的影响。主要研究成果如下:(1)通过数字照相量测技术,获得了隧道横断面围岩的变形破裂随荷载变化的时空演化规律:1)随着荷载的增大,隧道两侧拱腰出现了两条斜向上的弧形剪切滑移带,顶板上部岩体沿着剪切带发生整体性滑动,导致隧道失稳破坏。2)隧道左右边墙和顶板处岩体的径向位移与模型荷载大小呈单指数衰减关系。(2)采用透明岩体实验新技术,获得了隧道纵断面围岩的变形破裂规律:1)随着荷载的增大,掌子面前方25mm范围内和隧道顶部的岩体整体向下滑动,掌子面前方25mm范围外的岩体,沿着与隧道掘进方向成55°的弧形线向斜下方滑动;2)掌子面处中心线上部岩体沿着与中心线呈30°的弧形向隧道内滑动;3)掌子面前方岩体的水平位移与模型荷载呈双指数衰减关系;4)在掌子面前方以及模型边界处出现弧形剪切带。(3)采用普通相似材料实验方法,对上软下硬倾斜复合地层进行数字照相量测实验分析。结果表明,隧道围岩出现分区破坏,在围岩中出现两条剪切带,一条垂直于软硬地层交界线的剪切带,另一条与软弱地层交界线上方重合,造成顶部岩体的整体剪切破坏。(4)采用FLAC3D有限差分软件,获得了深部复合地层TBM隧道变形的时空演化规律:1)TBM隧道围岩塑性区呈‘X’型,以剪切破坏为主;2)围岩位移随埋深呈线性增长关系;计算步数越多,开挖引起的不平衡力释放比例增加不大,对围岩稳定性的影响较小;超挖间隙越大、滞后支护的时间越长,隧道围岩变形越大;3)TBM隧道掘进使开挖面产生空间效应,在开挖面前方3倍洞泾范围处地层已发生变形,掌子面处位移已达到总位移的55%。
[Abstract]:In order to solve the problem of space-time evolution of TBM tunnel deformation in deep composite strata, this paper studies the temporal and spatial evolution law of tunnel deformation by using digital photographic measurement and artificial spot making method, and uses FLAC3D numerical simulation software. The three-dimensional numerical model of TBM tunnel in deep composite stratum is established. The influence of support form, buried depth, tunneling speed, overcut gap, advance support intensity, supporting opportunity and composite formation on the stability of surrounding rock of tunnel is analyzed. The main research results are as follows: (1) with the increase of the load, the space-time evolution law of the deformation and rupture of the tunnel cross section surrounding rock with the change of load is obtained by the digital photographic measurement technology. On both sides of the tunnel, two curved shear slip zones appeared in the arch waist of the tunnel, and the upper roof rock mass slid along the shear zone as a whole. 2) the radial displacement of the left and right side wall and roof of the tunnel has a single exponential attenuation relationship with the model load. (2) A new technique of transparent rock mass experiment is adopted. With the increase of load, the rock mass in front of the face of the tunnel and at the top of the tunnel slips downwards, and the rock mass outside the range of 25mm in front of the face of the tunnel is obtained, and the rock mass outside the range of 25mm in front of the face of the tunnel is obtained. Sliding along the bottom of the arc line syncline 55 掳with the heading of the tunnel) the upper rock mass of the centerline at the palm face glides 30 掳toward the tunnel along the centerline) the horizontal displacement and the model load of the rock mass in front of the face of the tunnel are double. The exponential attenuation relation is 4) there is an arc shear band in front of the palm and at the model boundary. (3) the common similar material experimental method is used. The digital photographic measurement and analysis of the upper soft and hard inclined composite strata are carried out. The results show that there are two shear zones in the surrounding rock, one is perpendicular to the boundary line of soft and hard strata, the other overlaps with the boundary line of weak strata. (4) the space-time evolution law of TBM tunnel deformation in deep composite strata is obtained by using FLAC3D finite difference software. The plastic zone of surrounding rock of TBM tunnel is of X' type. The displacement of surrounding rock increases linearly with the buried depth, the larger the calculation steps, the less the proportion of unbalance force released by excavation, and the larger the gap between overexcavation and excavation, the longer the time of delayed support. The larger the surrounding rock deformation of the tunnel is, the greater the deformation of the tunnel is. The excavation of the TBM tunnel causes the excavation surface to produce spatial effect. The stratum has been deformed in the area of 3 times of the tunnel surface, and the displacement of the face has reached 55% of the total displacement.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U451

【参考文献】

相关期刊论文 前6条

1 贺广零;洪芳;王艳苹;;采空区煤柱-顶板系统失稳的力学分析[J];河北工程大学学报(自然科学版);2007年01期

2 刘泉声;时凯;黄兴;;临近巷道掘进扰动效应下巷道变形监测分析[J];煤炭学报;2011年06期

3 熊俊华,李建林;BP神经网络在卸荷岩体稳定分析中的应用[J];三峡大学学报(自然科学版);2002年01期

4 尚彦军,史永跃,曾庆利,尹俊涛,薛继洪;昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策[J];岩石力学与工程学报;2005年21期

5 刘建坡;李元辉;田军;赵兴东;刘洪涛;甘怀营;;基于单键群方法的岩石破裂声发射时空分布特征的试验研究[J];岩石力学与工程学报;2010年S2期

6 杨松林,朱焕春,刘祖德;加锚层状岩体的本构模型[J];岩土工程学报;2001年04期

相关博士学位论文 前2条

1 冷先伦;深埋长隧洞TBM掘进围岩开挖扰动与损伤区研究[D];中国科学院研究生院(武汉岩土力学研究所);2009年

2 苏华友;双护盾TBM开挖深埋隧洞围岩稳定性研究[D];西南交通大学;2009年



本文编号:2218394

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2218394.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c37ce***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com