动态疲劳荷载作用下路面混凝土力学性能研究
[Abstract]:In order to investigate the attenuation law of the mechanical properties of pavement cement concrete after the dynamic fatigue loading of vehicles, the optimum ratio of pavement concrete with mechanical performance, durability and workability is designed based on orthogonal test. Three load stress levels of 30% and 80% were selected and four different fatigue loading schemes were designed to carry out fatigue tests on pavement concrete. The residual strength and stress-strain curves of pavement concrete under different fatigue loading schemes were measured by MTS, and the mechanical properties of pavement concrete under dynamic fatigue loading were studied by means of the classical fracture energy theory. The results show that the residual flexural tensile strength of pavement concrete decreases by 20% when the stress level is 80% under dynamic fatigue load, and the residual flexural tensile strength of pavement concrete decreases by 20% after 4 hours of loading, and when the load stress level is 30% and 50%, the residual flexural tensile strength of pavement concrete decreases by 20%. In the early stage of dynamic fatigue load, the residual flexural tensile strength of concrete shows negative attenuation, and after 3 hours of fatigue loading, the residual flexural tensile strength of concrete increases by 7.9 and 3.1, respectively, and dynamic fatigue load results in the increase of pavement concrete brittleness. The deformation presents a three-stage attenuation law of "elastic-plastic similar elasticity", and the fracture energy of pavement concrete decreases with the increase of loading time and load stress level. When the stress level is greater than 50, the fracture energy of concrete is obviously degraded by fatigue load, and when the stress level is 3050% and 80%, the fracture energy of concrete decreases by 24% and 66% respectively after 4 hours of loading.
【作者单位】: 长安大学特殊地区公路工程教育部重点实验室;路易斯安那州立大学路易斯安那州交通研究中心;
【基金】:国家自然科学基金项目(51608047,51278059)
【分类号】:U414
【相似文献】
相关期刊论文 前10条
1 韩冰;蒲黔辉;施洲;;公路钢桥疲劳荷载谱调查研究[J];西南公路;2013年04期
2 宋玉普;韩基刚;;疲劳荷载作用下梁内不同类型钢筋破坏关系[J];哈尔滨工业大学学报;2012年08期
3 聂建国;王宇航;;钢-混凝土组合梁在疲劳荷载作用下的变形计算[J];清华大学学报(自然科学版);2009年12期
4 陈玉骥;疲劳荷载作用下长龄期混凝土弹性模量的试验研究[J];佛山科学技术学院学报(自然科学版);2005年03期
5 Wai Ching Tang;;疲劳荷载下FRP粘结系统的性能[J];钢结构;2009年01期
6 朱兵;;疲劳荷载作用下的混凝土耐久性分析[J];重庆科技学院学报(自然科学版);2009年04期
7 郭锐;;九江长江大桥疲劳荷载谱研究[J];现代交通技术;2012年05期
8 刘立新;汪小林;于秋波;安鸿飞;;疲劳荷载作用下部分预应力混凝土梁的挠度研究[J];郑州大学学报(工学版);2007年04期
9 吴瑾;王晨霞;徐贾;肖珍;吴方华;;疲劳荷载下锈蚀钢筋混凝土梁弯曲性能试验研究[J];土木工程学报;2012年10期
10 王余富;;疲劳荷载权函数下混凝土疲劳累积损伤值的研究[J];固体力学学报;2010年S1期
相关会议论文 前1条
1 唐先习;梁金宝;唐先周;徐岳;;疲劳荷载作用下受压混凝土应变性能试验研究[A];第22届全国结构工程学术会议论文集第Ⅱ册[C];2013年
相关博士学位论文 前1条
1 沈健;大体积桥塔既有裂纹在温度疲劳荷载下扩展概率研究[D];武汉理工大学;2013年
相关硕士学位论文 前4条
1 王彦红;混凝土在轴拉和轴向拉—压疲劳荷载作用下的试验性能研究[D];大连理工大学;2010年
2 丁仲凡;静载与疲劳荷载下表层嵌入CFRP-混凝土界面特性研究[D];华东交通大学;2014年
3 包格日乐图;风致疲劳荷载及其对风机基础稳定性影响的数值评价[D];内蒙古工业大学;2014年
4 孙美丽;多级等幅疲劳荷载作用下RPC的疲劳累积损伤研究[D];北京交通大学;2009年
,本文编号:2222968
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2222968.html