高墩大跨度连续刚构桥地震响应分析
[Abstract]:With the rapid development of economy and construction in China, long-span continuous rigid frame bridges are also widely used. Due to the good span capacity of rigid frame bridge, it is favored by more and more mountain roads, and the construction of bridge piers is becoming higher and higher. Therefore, the seismic response of long-span continuous rigid frame bridge with high piers is discussed in this paper. The main contents of this paper are as follows: (1) the dynamic characteristics of the structure of Xuejiaba No. 2 long-span continuous rigid frame bridge with high pier and large span are analyzed by using MIDAS/CIVIL software, and the vibration law of the structure is analyzed. The results show that: 1 the first vibration mode of the structure is vertical bending and longitudinal floating, and it is possible to produce a large plastic turning angle at the top of the pier and the bottom of the pier in the direction of the bridge, so we should pay attention to the pier top and the bottom of the pier, and strengthen the design of these plastic hinges. (2) the second and third vibration modes are both transverse bending, and the lateral stiffness of the bridge is low, which may result in larger lateral displacement. (2) the response spectrum seismic response of long-span rigid frame bridge with high piers is analyzed and studied, and the contribution of seismic excitation in different directions to the internal force and displacement of the structure is compared under three working conditions. The combination mode of seismic wave is obtained. It is found that: (1) the seismic excitation in the longitudinal and transverse direction must be considered, but the seismic excitation of the vertical bridge should not be considered when the fortification intensity is low, and the displacement of the pier is especially affected by the transverse partition of the pier. Especially the displacement along the bridge and across the bridge. Therefore, in the design of hollow piers, it is necessary to design reasonably and set the transverse diaphragm in a reasonable position, which will effectively reduce the displacement of the bridge piers. (3) three sets of seismic waves are used to analyze the seismic response of the structure, and the most unfavorable seismic waves are selected. It is found that, although the peak acceleration of seismic wave is the same, the spectral characteristics of seismic wave have obvious influence on the seismic response of the structure. (4) the results of response spectrum analysis and time-history analysis are compared. (5) dynamic time-history analysis method is used to analyze the seismic isolation device with high damping rubber bearing on the top of side pier, and to analyze the seismic response of the structure under the installation of seismic isolation support. It is found that: (1) the bearing has little effect on the longitudinal moment of the main beam, but it has a very obvious decrease in the transverse shear force of the main beam, and the support has little effect on the shear force of the main pier of the rigid frame bridge. But the application of rigid frame bridge support can reduce the lateral shear force of lateral bridge effectively, because the support is located at the top of the pier of side pier, and it also proves that the effect of bearing on the seismic force of lateral bridge is very obvious. (3) the application of the support will make the bending moment of the longitudinal bridge at the bottom of the main pier, the shearing force of the longitudinal bridge becoming smaller, the moment of the side pier and the longitudinal shear force of the longitudinal bridge becoming larger, which is beneficial to the overall stress of the structure and the improvement of the seismic performance of the structure; (5) under the action of seismic force, the maximum internal force of the main beam is located at the root of the main beam, and the internal force of the pier is the largest at the top of the pier and the bottom of the pier. Therefore, special attention should be paid to the seismic design of these key locations.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U442.55;U448.23
【共引文献】
相关期刊论文 前10条
1 谷音;蔡隆文;高智能;卓卫东;;基于增量动力分析和纤维模型的矮塔斜拉桥结构抗震性能研究[J];防灾减灾工程学报;2014年05期
2 沈菲君;徐振华;;与轨道交通共建的双层高架桥梁抗震性能研究[J];城市道桥与防洪;2014年10期
3 武维宏;;超大直径自应力钢管混凝土索塔设计与施工关键技术[J];城市道桥与防洪;2014年10期
4 陈旭;周东华;章胜平;王鹏;李龙起;;压弯截面的弹塑性弯矩-曲率相关关系的解析法[J];工程力学;2014年11期
5 朱勇毅;罗富元;;中小跨桥梁横向抗震挡块的合理设置方式[J];城市道桥与防洪;2014年11期
6 黄学漾;宗周红;黎雅乐;夏樟华;;独塔斜拉桥模型地震模拟振动台台阵试验[J];东南大学学报(自然科学版);2014年06期
7 高峰;;简支转连续桥梁下部抗震稳定性分析[J];湖南工程学院学报(自然科学版);2014年04期
8 柳春光;郝二通;张士博;孙国帅;;LCCA方法在桥梁工程中应用的研究综述[J];中外公路;2014年06期
9 何双;赵桂峰;马玉宏;崔杰;谢礼立;;基于概率地震需求模型的隔震桥梁易损性对比[J];地震工程与工程振动;2014年06期
10 李宏祥;;速度锁定支座在中新生态城故道桥上的应用[J];城市道桥与防洪;2014年12期
相关博士学位论文 前10条
1 付国;钢筋混凝土框架结构地震倒塌破坏研究[D];长安大学;2014年
2 宗雪梅;城市多层立交结构基于性能抗震设计方法研究[D];长安大学;2014年
3 李鹏飞;应力相关阻尼模型及其在梁式桥动力分析中的应用[D];北京交通大学;2014年
4 李忠三;基于静动力特性的多塔长跨斜拉桥结构体系刚度研究[D];北京交通大学;2014年
5 鲁四平;软土深基坑开挖下铁路桥梁力学性能及安全监测研究[D];中南大学;2013年
6 丁明波;铁路重力式桥墩抗震加固方法研究[D];兰州交通大学;2013年
7 张永亮;铁路桥梁桩基础抗震设计方法研究[D];兰州交通大学;2013年
8 陈旭;钢筋混凝土柱二阶弹塑性计算方法研究[D];昆明理工大学;2014年
9 程玲;基于Pushover方法的单自由度结构抗震易损性分析[D];大连理工大学;2014年
10 张宇;基于全寿命周期的近海钢筋混凝土桥梁结构抗震性能分析[D];大连理工大学;2015年
相关硕士学位论文 前2条
1 吕晓莹;基于MOPSO的RC桥梁全寿命抗震性能多目标优化研究[D];大连理工大学;2015年
2 宋鹏;配置HRB500钢筋桥墩抗震性能分析及数值模拟[D];河北工业大学;2015年
,本文编号:2291599
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2291599.html