基于ANSYS有限元分析的沥青路面车辙研究
[Abstract]:Under the condition of high temperature and heavy load, the viscoelastic-plastic behavior of asphalt mixture is very obvious. It is very important to study the permanent deformation of asphalt pavement, which can provide the corresponding support and basis for the structural design of asphalt pavement and rutting prevention measures. By using the effective finite element model to study the rutting of asphalt pavement, we can analyze the relationship between stress and strain in the process of rutting and the mechanical properties of asphalt pavement under different action factors, and provide a mechanical reference for the actual pavement condition. Firstly, on the basis of indoor Marshall test, rutting test and creep test of asphalt mixture, the rutting law of asphalt mixture is verified by simulation and comparison of elastic-plastic and viscoelastic-plastic models in ANSYS. It is found that the Creep model can effectively simulate the rutting characteristics of asphalt mixture. Secondly, compared with the literature data, the Creep model is effective to characterize the rutting of full-thickness asphalt pavement. Finally, two different asphalt pavement rutting characteristics and in-layer mechanical properties are studied under the influence of different factors. The specific research contents are as follows: 1. The Creep model in ANSYS is used to approximate the time hardening characteristics of asphalt pavement ruts. Under the condition of rectangular distribution of tire earthing pressure, the actual dynamic load is equivalent to static load by static displacement method. The rutting process of indoor asphalt mixture is simulated according to the number of loads specified in the test rules. The results show that the result of simulation is very different from that of indoor test in the early stage of loading. Rutting mainly comes from the compaction of mixture. However, with the increasing of the number of loads, the difference decreases gradually, and the two kinds of deformation laws are consistent with each other. 2. The Creep model is also used for the full-thickness asphalt pavement. The comparison shows that the rutting deformation law of the full-thickness asphalt pavement represented by the Creep model is consistent with the law given in the literature, and the simulation results are smaller than the experimental results in the literature. It is shown that the Creep model can approximate study the permanent deformation characteristics of full-thickness asphalt pavement under high temperature and heavy load. In the full thickness asphalt pavement stress-strain cloud diagram, it can be found that the vertical deformation mainly distributes in the middle area of the surface layer, and the maximum stress occurs at the center of the wheel gap acting on the wheel load. The maximum vertical deformation and surface deflection of the two kinds of asphalt pavement under different temperatures, different loads and different loading times are simulated and analyzed. The variation rules of four stress indexes in both sides of the wheel load and the pavement layer are as follows: the vertical displacement of asphalt pavement increases with the increase of temperature, the number of loads and the load level. The resistance to vertical deformation of modified asphalt pavement is better than that of matrix asphalt pavement. The distribution of road surface deflection indicates that the deflection of the road surface is the largest in the depth range of the center of the wheel load and gradually decreases to the two sides. The uplift on both sides of the wheel load increases with the increase of the number of loads, at the same time, the increase of the load level also increases the uplift, and the horizontal distance between the maximum uplift and the center of the wheel gap increases gradually. Under the condition of high temperature, the changes of the four stress indexes of the two kinds of asphalt pavement under repeated loads and different load levels are the same, and at the same time, there are obvious numerical differences. The modified asphalt pavement is more suitable for high temperature than the base asphalt pavement. The influence of heavy load condition; The shear strain first increases to the maximum peak value and then decreases gradually with the increase of the depth; the larger the load level, the greater the shear strain indexing depth, and the smaller the shear strain distribution depth of the modified asphalt pavement is when it is subjected to the same load stage.
【学位授予单位】:湖北工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U416.217;U418.68
【相似文献】
相关期刊论文 前10条
1 李力;;高速公路沥青路面车辙形成原因及机理分析[J];山西建筑;2010年24期
2 韩彦;;沥青路面车辙问题的解决措施[J];交通世界(建养.机械);2010年12期
3 孙静宁;朱银涛;于明湖;贾云清;;沥青路面车辙的预防措施[J];公路交通科技(应用技术版);2012年09期
4 张胜芬;;南方地区沥青路面车辙与水损害现象的治理措施探讨[J];科技信息;2012年33期
5 王辉;黄筑强;;形成沥青路面车辙的影响因素分析[J];企业技术开发;2013年04期
6 张钊;赵伟;;沥青路面车辙成因及防治对策研究[J];河南科技;2013年06期
7 王建平;;公路沥青路面车辙的成因及防治措施[J];科技视界;2013年18期
8 郑远东;李松波;;沥青路面车辙成因及防治对策研究[J];河南科技;2013年22期
9 王新增,,翟站立,孙新枝;浅谈沥青路面车辙的防治措施[J];河南交通科技;1996年04期
10 邱琦;;沥青路面车辙产生的原因和防止措施[J];江西建材;2014年06期
相关会议论文 前9条
1 陈洪兴;杨扬;;基于路面一车辆动载耦合作用的沥青路面车辙计算方法研究[A];江苏省公路学会优秀论文集(2006-2008)[C];2009年
2 卞成娜;梅金乾;;浅析沥青路面车辙产生的原因及防治措施[A];公路交通与建设论坛(2009)[C];2010年
3 吴瑞麟;石立万;马光华;;轻荷载大交通量对沥青路面车辙影响的试验研究[A];第九次全国城市道路与交通工程学术会议论文集[C];2007年
4 赵雄伟;刘细军;;沥青路面车辙病害成因与防治措施[A];中国地质学会工程地质专业委员会、贵州省岩石力学与工程学会2005年学术年会暨“岩溶·工程·环境”学术论坛论文集[C];2005年
5 叶楠;魏水平;范厚彬;;沥青路面车辙形成机理的数值模拟研究[A];和谐地球上的水工岩石力学——第三届全国水工岩石力学学术会议论文集[C];2010年
6 樊兴文;;高速公路沥青路面车辙产生机理及预防措施[A];2013年4月建筑科技与管理学术交流会论文集[C];2013年
7 周建坤;王建松;虞胤;;沥青路面车辙病害分析及处治措施[A];全国城市公路学会第二十二次学术年会论文集[C];2013年
8 郭成超;肖丽霞;乐金朝;;基于蠕变模型的轴载作用下沥青路面车辙分析[A];力学与工程应用[C];2012年
9 李嘉图;N.韦拉考特;刘宗波;;利用RLWT对沥青路面车辙现象的整体性评价及展望[A];2004年道路工程学术交流会论文集[C];2004年
相关博士学位论文 前1条
1 陈凤晨;基于光纤光栅技术的沥青路面车辙预估方法研究[D];哈尔滨工业大学;2009年
相关硕士学位论文 前10条
1 汪凡;基于流变学本构模型和动力有限元分析的沥青路面车辙计算[D];重庆交通大学;2009年
2 杨博;基于有限元方法的沥青路面车辙影响因素分析及其应用研究[D];长安大学;2010年
3 刘威;基于非定常数伯格斯模型的沥青路面车辙预估[D];重庆交通大学;2013年
4 王宝林;城市道路沥青路面车辙变形现场调查及数值模拟[D];浙江工业大学;2012年
5 田野;云南省高速公路沥青路面车辙力学性能研究[D];昆明理工大学;2012年
6 何金龙;温度场下城市沥青路面车辙成因力学机理分析[D];中南大学;2014年
7 唐娟;海南省气候区划和温度场与沥青路面车辙相关性研究[D];中南大学;2012年
8 朱乔;基于ANSYS有限元分析的沥青路面车辙研究[D];湖北工业大学;2015年
9 徐东;基于ALF加速加载试验的沥青路面车辙有限元模拟[D];长安大学;2010年
10 张毅;陕西省高速公路沥青路面车辙成因及对策研究[D];长安大学;2004年
本文编号:2296244
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2296244.html