当前位置:主页 > 科技论文 > 路桥论文 >

螺旋牵拉自行进式掘进机的现场行进试验研究

发布时间:2018-11-17 08:06
【摘要】:本文对应用较广的盾构法和顶管法隧道施工技术和应用现状进行了介绍,在此基础上对以螺旋向土中旋转来提供前行拉力的新型隧道掘进机的现场行进进行了研究。本着实践创造理论,理论指导实践的科学原则。对前期进行的螺旋牵拉力试验进行分析,建立螺旋结构与土体相互作用的理论模型,以摩尔-库伦理论为基础,采用对剪切面积分的方法推导螺旋的极限拉力计算公式。并据此结合现有的掘进机阻力计算公式确定了掘进机在几种不同土层中的自行进可行性,为后期掘进机的现场试验提供理论指导和支持。按照前期理论计算结果完成掘进机的螺旋选型,在掘进机内部布设拉力传感器及压力传感器,对掘进机在前行过程中螺旋所提供的牵拉力进行量测,完成螺旋与土体之间相互作用及掘进机受到的摩擦阻力的分析研究。通过安装于伺服电机上的扭矩传感器,对螺旋在土中旋转时受到的扭矩进行量测,完成对螺旋行进状态的分析研究。通过对螺旋牵拉自行进式掘进机行进过程中遇到的各类问题的分析和解决,最终完成了掘进机的现场行进试验。通过试验研究和分析,得出结论如下:1掘进机的螺旋:(1)扁截面螺旋破坏时为整体剪切面的破坏,圆截面螺旋破坏时剪切面会逐个螺距的破坏,属于各个击破。所以扁截面螺旋所能提供的极限牵拉力较圆截面螺旋大。(2)试验中初始使用的同向螺旋会对掘进机产生附加的扭矩,使掘进机发生旋转。因此采用正反螺旋才能保证掘进机的顺利行进。(3)对粘性土质,圆柱上缠绕螺旋在向土中旋转时可以预先起到加密土体的作用,增大螺旋与土体之间作用的剪切力且可以提高螺旋刚度。2掘进机的自行进研究:(1)以摩尔-库伦破坏理论为基础,采用积分的方法得出螺旋极限牵拉力的公式可以用于螺旋牵拉自行进式掘进机的极限牵拉力计算。(2)通过计算可以得出试验时所采用的螺旋规格和参数,在采用10个有效螺距的情况下,能完全满足螺旋牵拉自行进式掘进机在粉土和粉质粘土中自行走的要求。(3)计算和试验结果表明,螺旋牵拉力在粉土、粉质粘土中较砂性土中大。(4)计算得到螺旋牵拉力在砂土中不能满足牵拉自身前行的要求。但可以考虑采取在砂性土层中采取诸如螺旋前方注浆等先行土体补强措施,实现掘进机在砂土中的自行进。(5)从根本上改变了掘进机的设计理念,破除了传统的把土当作制约掘进机前行的“敌人”,采用了“化敌(土)为友,为我所用”的新型理念。
[Abstract]:In this paper, the tunnel construction technology and current application status of shield and pipe jacking method are introduced. Based on this, the field travel of a new type of tunnel tunneling machine with spiral rotation in soil to provide forward pulling force is studied. In the light of the theory of practical creation, the theory guides the scientific principle of practice. The theoretical model of the interaction between the helical structure and the soil is established by analyzing the helical retraction test carried out in the early stage. Based on the Mohr-Coulomb theory, the calculation formula of the ultimate tensile force of the helix is derived by the method of shear area division. Based on the existing formulas of roadheader resistance calculation, the self-advancing feasibility of roadheader in several different soil layers is determined, which provides theoretical guidance and support for the field test of roadheader in the later stage. According to the results of previous theoretical calculation, the screw type selection of the roadheader is completed, and the tension sensors and pressure sensors are arranged inside the roadheader to measure the pulling force provided by the roadheader in the process of moving forward. The interaction between spiral and soil and friction resistance of roadheader are studied. Through the torque sensor installed on the servo motor, the torque of the screw rotating in the soil is measured, and the analysis and research of the spiral traveling state are completed. Through the analysis and solution of all kinds of problems encountered in the traveling process of the self-propelled roadheader with helical traction, the field traveling test of the roadheader is finally completed. Through experimental study and analysis, the conclusions are as follows: (1) the spiral of the roadheader is the failure of the whole shear plane when the spiral of the flat section is destroyed, and the shear plane will destroy one by one when the spiral of the circular section is broken, which belongs to each of them. Therefore, the limit pull force provided by flat section spiral is larger than that of round section spiral. (2) the initial coaxial helix used in the test will produce additional torque to the roadheader and make the roadheader rotate. Therefore, the use of positive and negative spirals can ensure the smooth progress of the roadheader. (3) for the viscous soil, the spiral winding on the cylinder can play the role of infill the soil in advance when it rotates into the soil. Increasing the shear force between the screw and the soil and increasing the helical stiffness. 2 the self-advancing research of the roadheader: (1) based on the Mohr-Coulomb failure theory, The formula of the helical limit pulling force can be used to calculate the limit pull force of the self-propelled roadheader with spiral traction by integral method. (2) the helical specifications and parameters used in the test can be obtained by calculation. Under the condition of 10 effective pitch, it can fully meet the requirement of self-running of the self-propelled roadheader in silt and silty clay. (3) the calculation and test results show that the helical traction force is in silt. The results show that the spiral pulling force in sandy soil can not meet the requirements of pulling itself. However, we can consider taking measures to strengthen the soil in sand soil, such as grouting in front of the spiral, so as to realize the self-improvement of the roadheader in the sand. (5) the design concept of the roadheader has been fundamentally changed. In addition to the traditional "enemy" that restricts the roadheader, it adopts the new idea of "turning the enemy (earth) into a friend and using it for me".
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U455.31

【共引文献】

相关期刊论文 前6条

1 李现森;;利用多条极小间距矩形顶管建造大型地下商业空间的设计与施工技术[J];隧道建设;2014年04期

2 冯海宁,龚晓南,徐日庆;顶管施工环境影响的有限元计算分析[J];岩石力学与工程学报;2004年07期

3 朱合华,吴江斌,潘同燕;曲线顶管的三维力学模型理论分析与应用[J];岩土工程学报;2003年04期

4 汤华深,刘叔灼,莫海鸿;顶管侧摩阻力理论公式的探讨[J];岩土力学;2004年S2期

5 冯海宁,温晓贵,龚晓南;顶管施工环境影响的二维有限元计算分析[J];浙江大学学报(工学版);2003年04期

6 王双;夏才初;葛金科;;考虑泥浆套不同形态的顶管管壁摩阻力计算公式[J];岩土力学;2014年01期

相关硕士学位论文 前8条

1 蒋海强;高集海堤原水管迁改工程顶管施工技术的研究[D];华侨大学;2011年

2 焦永强;顶管施工与原体测试[D];西安建筑科技大学;2002年

3 丁传松;直线及曲线顶管施工中的顶推力研究[D];南京工业大学;2004年

4 刘源;顶管施工中若干问题的分析与计算[D];中国地质大学(北京);2006年

5 王召民;山区管道顶管施工技术[D];中国石油大学;2007年

6 王世付;浅埋地道桥顶进施工技术及地面沉降分析[D];西南交通大学;2008年

7 薛振兴;顶管施工顶力计算与力学特性研究[D];中国石油大学;2010年

8 刘焕文;顶管工程施工对周边环境的影响分析[D];安徽建筑工业学院;2011年



本文编号:2337073

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2337073.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户98e76***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com