基于健康监测的桥梁结构有限元模型修正方法研究
[Abstract]:Bridge engineering is a national lifeline project. After the bridge is opened to traffic, with the passage of time, it will be affected by environmental erosion, human factors, material aging, natural disasters and the interaction of vehicle loads, so it will be damaged and degraded to varying degrees. The bridge health monitoring system acquires the structure response information and the bridge environment condition from the sensor real-time monitoring data, calculates and analyzes the data, judges and evaluates the stress state and the resistance attenuation rule of the bridge structure, and ensures the bridge safe operation. Damage identification is the core of the task of health monitoring system. However, the premise of damage identification is to establish an accurate finite element model. In this paper, the dynamic response of bridge health monitoring system is taken as the research object of finite element model modification, and the application of neural network algorithm and response surface method in model modification is studied. The finite element model is modeled and analyzed by ANSYS software. Genetic algorithm is used to optimize neural network, MATLAB is used to program the model correction, and MATLAB is used to develop toolbox to realize the visualization of response surface model modification. The real-time monitoring data based on the health monitoring system can realize the real-time correction of the model and can provide an accurate finite element model for bridge structure calculation in time. The main research contents are as follows: 1. The theory of finite element model modification is introduced and the general process of finite element model modification is explained. 2. Aiming at the deficiency of the traditional acceleration sensor optimization arrangement method, this paper puts forward the method of this paper, combining the engineering experience to complete the optimization layout of the acceleration sensor of the Ju River Bridge; The advantages and disadvantages of different sensors are summarized, and the layout scheme of the full bridge sensor is introduced. 3. Aiming at the defects of general generalized regression neural network, an optimization method based on genetic algorithm is proposed and applied to finite element model modification. The application principle and flow chart of neural network in model modification are introduced in detail. 4. In the MATLAB software environment, the optimized generalized regression neural network model modification method proposed in this paper is applied to the supporting engineering. The accuracy, superiority and effectiveness of the neural network model modification method based on genetic algorithm are verified by the comparison and analysis of the modified results. 5. The principle and process of model modification based on response surface method are introduced, and applied to supporting engineering. A toolbox is developed by using MATLAB to visualize the response surface model modification.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U446;U441
【参考文献】
相关期刊论文 前10条
1 梁鹏;李斌;王秀兰;王晓光;吴向男;马旭明;;基于桥梁健康监测的有限元模型修正研究现状与发展趋势[J];长安大学学报(自然科学版);2014年04期
2 韩建平;骆勇鹏;郑沛娟;刘云帅;;基于响应面的刚构-连续组合梁桥有限元模型修正[J];工程力学;2013年12期
3 杨雅勋;郝宪武;孙磊;;刚构-连续梁桥健康监测系统设计[J];噪声与振动控制;2011年01期
4 宗周红;高铭霖;夏樟华;;基于健康监测的连续刚构桥有限元模型确认(Ⅰ)——基于响应面法的有限元模型修正[J];土木工程学报;2011年02期
5 邓苗毅;任伟新;王复明;;基于静力响应面的结构有限元模型修正方法[J];实验力学;2008年02期
6 智翠梅;;均匀设计及优化[J];化工中间体;2007年03期
7 闫桂荣;段忠东;欧进萍;;遗传算法在结构有限元模型修正中的应用[J];哈尔滨工业大学学报;2007年02期
8 李义强;张彦兵;王新敏;;基于参数识别的钢筋混凝土简支梁桥静力模型修正技术[J];石家庄铁道学院学报;2006年03期
9 李惠;欧进萍;;斜拉桥结构健康监测系统的设计与实现(II):系统实现[J];土木工程学报;2006年04期
10 李惠;欧进萍;;斜拉桥结构健康监测系统的设计与实现(I):系统设计[J];土木工程学报;2006年04期
相关博士学位论文 前1条
1 赵虎;大跨度斜拉桥运营期性能监测与评估[D];西南交通大学;2015年
相关硕士学位论文 前10条
1 倪富陶;基于动力监测的传感器优化算法及综合评价研究[D];长安大学;2016年
2 陈星;基于遗传改进广义回归神经网络的铁路货运量预测研究[D];大连交通大学;2015年
3 何涛;基于动静载试验的桥梁结构模型修正方法应用研究[D];太原理工大学;2015年
4 黄琼;基于响应面法的钢筋混凝土框架结构有限元模型修正研究[D];兰州理工大学;2014年
5 陈舒婷;大跨径连续刚构桥健康监测传感器优化布置及状态评估研究[D];武汉理工大学;2014年
6 殷广庆;梁式桥有限元模型建立与修正及其应用[D];大连理工大学;2013年
7 骆勇鹏;基于响应面法的桥梁结构有限元模型静动力修正方法研究[D];兰州理工大学;2013年
8 丁德豪;单塔斜拉桥模型修正研究[D];西南交通大学;2012年
9 毛建平;基于神经网络的桥梁结构静力有限元模型修正[D];吉林大学;2011年
10 钟颖;基于静力测试数据的桥梁结构有限元模型修正[D];西南交通大学;2009年
,本文编号:2342104
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2342104.html