基于大数据的寻位最优路径的分析与研究
[Abstract]:At present, the number of cars in our country is increasing, which brings convenience to the travel of thousands of families, and it is also a great test to the municipal construction and urban management of the city. The root causes of parking problems are limited number of parking spaces, insufficient information on garage location, improper garage management and illegal parking, etc. Because the shortage of parking space can not be greatly increased in the short term, the solution to the problem of urban parking depends on how to select the parking location and how to guide the optimal path. Therefore, this paper designs and implements an optimal parking guidance system based on big data. Using data processing technology, according to parking space information and other parameters, through information collection, transmission, processing and release, as well as client application several modules connected, using the computer to give the best parking lot location selection, According to the optimal path, parking guidance can not only facilitate the parking of users, but also play an important role in parking management. Based on the research background and significance of the subject, this paper first analyzes the problems facing parking in China, and compares the current algorithms of location finding and optimal path guidance. The practical significance and necessity of location finding algorithm and optimal path algorithm to solve the difficult parking problem are clarified. The main work of this paper is as follows: firstly, the research status of location finding algorithm and optimal path guidance algorithm at home and abroad are compared and analyzed, and the optimal path guidance algorithm suitable for this system is selected. An optimal location finding algorithm based on multi-exponential decision is proposed. Secondly, the optimal location finding algorithm and the optimal path guidance algorithm are verified by experiments, and the advantages and practicability of the algorithm are proved. Finally, the overall framework of optimal location finding and optimal path guidance system based on big data is designed, and the hardware and software experimental platform is set up, and the optimal location finding and optimal path guidance experiment is carried out. It realizes a series of system functions from data acquisition to information processing and publishing, and finally to the application of the system, which proves the feasibility and practicability of the algorithm and system in this paper. The experimental results show that the proposed optimal location finding and optimal path guidance system based on big data can solve the parking problem to some extent.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.7;TP311.13
【参考文献】
相关期刊论文 前10条
1 梁潇;钱志鸿;田洪亮;王雪;;基于马尔可夫决策模型的异构无线网络切换选择算法[J];物理学报;2016年23期
2 刘婧;关宏志;贺玉龙;赵昕;;大城市中心区停车寻位研究[J];公路交通科技;2016年01期
3 黄翔;王志忠;郭建华;;Theoretical generalization of Markov chain random field from potential function perspective[J];Journal of Central South University;2016年01期
4 张素红;李博;吴飞;杨广达;;基于物联网的智能停车场管理系统设计及实现[J];物联网技术;2015年11期
5 张磊;;基于logit模型的停车费率变化对居民出行方式的影响分析[J];交通与运输(学术版);2015年01期
6 戴帅;刘金广;朱建安;巩建国;;中国城市机动化发展情况及政策分析[J];城市交通;2015年02期
7 田琼;杨丽;罗婷;;基于马尔科夫链的停车寻位模型与仿真[J];交通运输系统工程与信息;2015年01期
8 王树西;李安渝;;Dijkstra算法中的多邻接点与多条最短路径问题[J];计算机科学;2014年06期
9 姚思泉;张临;陈智存;熊炼;;LTE HeNB的X2切换控制面的研究与应用[J];移动通信;2014年08期
10 罗从双;王仪;;中小城市商业区停车调查与分析[J];河南城建学院学报;2013年04期
相关硕士学位论文 前10条
1 刘志凯;基于Web的Python编程环境研究[D];新疆农业大学;2015年
2 刘敏;大型停车场车辆定位与停车诱导研究[D];天津大学;2014年
3 袁德宇;类人猿机器人复杂地貌下路径搜索与全方位步行研究[D];哈尔滨工业大学;2014年
4 张树德;基于复杂网络理论的城市道路网络脆弱性研究[D];哈尔滨工业大学;2014年
5 冯璐璐;基于物联网的停车泊位诱导系统关键技术研究[D];吉林大学;2013年
6 安丽君;基于嵌入式的物联网信息采集系统的设计与实现[D];北京邮电大学;2013年
7 雒娜;基于ECLIPSE平台的OPS插件开发[D];上海交通大学;2012年
8 赵新;基于移动GIS的Dijkstra算法的优化及应用研究[D];成都理工大学;2012年
9 孙磊;城市中心区自驾车通勤者停车选择行为研究[D];哈尔滨工业大学;2010年
10 李舒晨;网络信息采集处理平台的研究[D];北京交通大学;2009年
,本文编号:2349401
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2349401.html