基于IOS的车辆行驶行为识别方法研究与实现
[Abstract]:In recent years, with the rapid development of the national economy and society, the number of vehicles has risen rapidly, and the problem of road traffic safety has been paid more and more attention by the society. Statistical data show that poor driving behavior is the main cause of traffic accidents. It is of guiding significance to analyze the behavior of vehicles in the course of driving to regulate driving behavior, reduce traffic accidents and improve traffic safety. The rapid development of Internet technology and the rich functions of intelligent mobile terminal devices bring convenience to people's life. Smart devices have become an indispensable part of people's lives. Accelerometers and gyroscopes in IOS smart devices can sense the movement and state of devices, and can achieve low-cost data acquisition through these sensors. This paper uses IOS device sensor to collect and recognize the driving behavior of the vehicle, including: changing track, accelerating, decelerating, braking and so on. On this basis, a recognition algorithm based on support vector machine is proposed. The specific work is as follows: 1. Accelerometers and gyroscopes embedded in mobile terminals such as smart phone / pad are used to collect acceleration and angular velocity data during vehicle driving, aiming at the problem of zero drift and high frequency noise caused by vehicle bumps during vehicle driving. Data collected by zero and low pass filter processing. 2. In view of the acceleration and angular velocity data collected during the course of the vehicle moving, accelerating, decelerating and braking, the characteristic vectors, including the difference between the maximum, the minimum, the maximum and the minimum values, are established to characterize the characteristics of the vehicle's behavior, including the maximum, the minimum and the maximum and minimum values of the data. A vehicle behavior classifier based on support vector machine (SVM) is proposed based on mean and variance. An N- 未 sliding window intercepting algorithm is proposed to realize the fast partition of data including multiple behaviors. The experimental test platform is built and the vehicle driving behavior identification method proposed in this paper is tested in the urban road. The test results show that the method can effectively identify the vehicle driving behavior.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U495
【参考文献】
相关期刊论文 前9条
1 肖献强;任春燕;王其东;;基于隐马尔可夫模型的驾驶行为预测方法研究[J];中国机械工程;2013年21期
2 张泽星;宗长富;马福良;王畅;;基于多维高斯隐马尔科夫模型的驾驶员转向行为辨识方法[J];汽车技术;2011年07期
3 成波;冯睿嘉;张伟;李家文;张希波;;基于多源信息融合的驾驶人疲劳状态监测及预警方法研究[J];公路交通科技;2009年S1期
4 郭孜政;陈崇双;王欣;;基于贝叶斯判别的驾驶行为危险状态辨识[J];西南交通大学学报;2009年05期
5 宗长富;杨肖;王畅;张广才;;汽车转向时驾驶员驾驶意图辨识与行为预测[J];吉林大学学报(工学版);2009年S1期
6 汪子梅;杨翠容;武薇;范影乐;;采用分块耦合广义分形维的语音端点检测技术研究[J];生物医学工程学杂志;2008年03期
7 冯国友;戴扬;沈海斌;时晓东;;孤立词语音识别中端点检测加速器的设计与实现[J];电子器件;2007年03期
8 王晓原;杨新月;;驾驶行为非参数微观仿真模型[J];交通运输工程学报;2007年01期
9 韦华,张伟;中美两国汽车驾驶安全影响因素研究[J];中国安全科学学报;2004年09期
相关博士学位论文 前3条
1 周俊静;基于激光雷达的智能车辆目标识别与跟踪关键技术研究[D];北京工业大学;2014年
2 张一;智能视频监控中的目标识别与异常行为建模与分析[D];上海交通大学;2010年
3 张磊;基于驾驶员特性自学习方法的车辆纵向驾驶辅助系统[D];清华大学;2009年
相关硕士学位论文 前9条
1 任亮;智能车环境下车辆典型行为识别方法研究[D];长安大学;2015年
2 宋雅清;基于Android传感器的驾驶事件识别关键技术研究[D];中国海洋大学;2014年
3 任静文;基于智能手机终端的驾驶行为风格检测[D];电子科技大学;2014年
4 石磊;基于Android智能移动终端的汽车疲劳驾驶预警系统的研究与实现[D];南京邮电大学;2013年
5 陈文;基于加速度传感器的智能终端手势识别关键技术研究[D];国防科学技术大学;2011年
6 黄沁元;基于iPhone设备点对点通信增值服务软件的实现[D];电子科技大学;2011年
7 李实振;北京市司机风险驾驶行为研究[D];北京交通大学;2011年
8 龚全福;基于iOS的新浪微博iPhone客户端的设计与实现[D];电子科技大学;2011年
9 龚剑;汽车不良驾驶行为监测系统的设计与实现[D];武汉理工大学;2010年
,本文编号:2368005
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2368005.html