当前位置:主页 > 科技论文 > 路桥论文 >

信息反馈技术在牛头山隧道施工中的应用

发布时间:2018-12-16 01:06
【摘要】:随着我国交通系统的不断完善,特别是近几年大量高速铁路隧道工程陆续开工建设,其工程地质条件也日趋复杂,过去单纯的经验施工和工程类比法已不能满足现场施工的实际需要,必须通过现场实时监测,获取隧道的围岩变化规律,并及时对其进行预处理分析,将分析结果及时反馈于业主、设计单位、监理及施工单位,以便各单位对隧道变形做出科学预测并优化改善隧道设计及其开挖支护方案,以降低施工成本,提高施工速度。本文以牛头山隧道开挖为工程背景,对信息反馈技术在隧道施工中的应用进行研究,主要内容有:首先,根据牛头山隧道实际围岩情况、施工情况,确定适合牛头山隧道施工的隧道监测方案,并选择科学合理的监测断面布点方式;其次,实时监测各设计监测断面监测项目,对监测数据进行预处理,并建立六种函数回归模型,利用origin软件对预处理结果通过六种回归模型进行比较分析,获得围岩变形、拱顶收敛及地表沉降规律函数;最后,对回归函数进行求导,获得围岩变形、拱顶收敛及地表沉降速率变化函数,绘制变化曲线,对牛头山隧道开挖方案和支护方案进行优化,并通过试验段对优化效果进行了验证,结果表明优化方案是科学合理的。信息反馈技术在牛头山隧道中的成功运用极大降低了牛头山隧道施工风险,提高了工程质量,对其他各类工程施工也具有借鉴意义。
[Abstract]:With the continuous improvement of the transportation system in China, especially the construction of a large number of high-speed railway tunnel projects in recent years, the engineering geological conditions are becoming more and more complex. In the past, the simple experience construction and the engineering analogy method can not meet the actual needs of the field construction. It is necessary to obtain the change law of the surrounding rock of the tunnel through the real time monitoring on the spot, and carry on the preprocessing analysis to it in time. The analysis results are fed back to the owners, design units, supervision and construction units in time, so that each unit can make scientific prediction of tunnel deformation and optimize and improve the tunnel design and excavation support scheme, so as to reduce the construction cost and improve the construction speed. Taking Niutoushan tunnel excavation as the engineering background, this paper studies the application of information feedback technology in tunnel construction. The main contents are as follows: first, according to the actual surrounding rock condition of Niutoushan tunnel, the construction situation, Determine the tunnel monitoring scheme suitable for Niutoushan tunnel construction, and choose a scientific and reasonable monitoring section distribution method; Secondly, the monitoring items of monitoring sections are monitored in real time, the monitoring data are pretreated, and six kinds of function regression models are established. The results of preprocessing are compared and analyzed by six regression models using origin software, and the deformation of surrounding rock is obtained. The law function of arch roof convergence and surface subsidence; Finally, the derivation of the regression function is carried out, and the deformation of surrounding rock, the convergence of arch roof and the change function of surface subsidence rate are obtained, the change curve is drawn, and the excavation scheme and supporting scheme of Niutoushan tunnel are optimized. The results show that the optimization scheme is scientific and reasonable. The successful application of information feedback technology in Niutoushan tunnel has greatly reduced the construction risk of Niutoushan tunnel, improved the engineering quality, and also has reference significance for other kinds of engineering construction.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U455.4

【参考文献】

相关期刊论文 前10条

1 何栋梁;成彦惠;方建勤;柳群义;;考虑时空效应的隧道围岩变形分析[J];公路交通科技;2016年07期

2 武晓勇;;隧道信息化施工监测中项目管理的具体内容[J];交通世界;2016年18期

3 唐霞;陈建平;孙洋;罗林;;软岩公路隧道二次衬砌支护时间的优化研究[J];科学技术与工程;2015年03期

4 包太;言志信;刘新荣;;有理函数在隧道监测数据回归分析中的应用[J];地下空间与工程学报;2009年05期

5 陆渝生;许琼萍;邱艳宇;李朝圃;王德荣;;隧道洞库施工监测方案的优化设计[J];解放军理工大学学报(自然科学版);2009年02期

6 王鹏;周传波;郭廖武;梅林芳;李扬;;基于FLAC及神经网络的岩体力学参数反分析[J];矿冶工程;2009年02期

7 刘大刚;陶德敬;王明年;;地铁双隧道施工引起地表沉降及变形的随机预测方法[J];岩土力学;2008年12期

8 黄明华;刁心宏;杨华;;隧道变形预测的灰色模型研究[J];华东交通大学学报;2008年02期

9 时亚昕;陶德敬;王明年;;大断面浅埋暗挖隧道施工引起的地表移动及变形预测[J];岩土力学;2008年02期

10 杜菊红;黄宏伟;雷新文;;平年小间距隧道监控量测分析[J];地下空间与工程学报;2007年S2期

相关硕士学位论文 前5条

1 汪春鸣;组合模型在隧道变形预测中的应用[D];江西理工大学;2012年

2 易志强;隧道施工监控量测数据挖掘及其变形预测[D];长沙理工大学;2011年

3 牛淑慧;安晋浅埋隧道开挖地表沉降及安全分析[D];昆明理工大学;2010年

4 贾璞;箱涵浅埋暗挖施工地表沉降监测资料分析与数据挖掘[D];天津大学;2009年

5 陈晓鹏;岩体边坡监测信息管理与监测数据分析网络系统开发及工程应用[D];山东大学;2008年



本文编号:2381596

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2381596.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a4fa0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com