公交车辆到站时间预测方法研究
[Abstract]:The arrival time of public transport vehicles is one of the important embodiment of bus intelligence. Improving the precision of bus arrival time prediction can improve the level of public transport services, ease traffic congestion, and reduce passenger travel costs. Realizing the informationization of public transportation system has an important role to promote. Firstly, the paper analyzes the principle, method and characteristics of bus operation data collection, and designs GPS data interpolation algorithm and bus line discretization algorithm to deal with bus operation data. Based on the analysis of the factors affecting the running process and arrival time of public transport vehicles, the station stop time and the average driving speed of the interval are taken as input variables, and the algorithm to obtain the input variables is designed. Secondly, the paper takes the stop time and the average speed of the interval as input variables, and establishes the arrival time prediction model based on interval length (Statistical Method Bus Arrival Time Prediction Model Based on Interval Length,SMBATP-IL). Based on interval length Kalman filter arrival time prediction model (Kalman.Filter Bus Arrival Time Prediction Model Based on Interval Length,KFBATP-IL) and particle filter arrival time prediction model based on interval length (Particle Filter Bus Arrival Time Prediction Model Based on Interval Length,PFBATP-IL). The specific flow and steps of the algorithm are designed. The PFBATP-IL model is taken as an example to prove the feasibility of the proposed prediction method and model. Finally, two bus routes in Beijing are selected for empirical analysis. The average absolute error (MAE) is taken as the index to measure the predicted results. The three times of early peak (8:00), Pingfeng (11:00) and late peak (17:00) are selected. Under the conditions of different interval length (10m ~ 20m ~ 30m), the arrival time is predicted by using the model established in this paper. The results show that different interval lengths have the least influence on PFBATP-IL model, followed by KFBATP-IL model, and have the greatest influence on the prediction results of SMBATP-IL model. Under the condition of optimal interval length, the prediction results of PFBATP-IL model are optimal, which are improved by 16.86% and 28.46%, respectively, compared with those of KFBATP-IL model and SMBATP-IL model.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.17
【参考文献】
相关期刊论文 前10条
1 任远;吕永波;马继辉;陈鑫杰;余明捷;;基于粒子滤波的公交车辆到站时间预测研究[J];交通运输系统工程与信息;2016年06期
2 汪磊;左忠义;;基于MLR的公交车行程时间预测模型[J];大连交通大学学报;2015年02期
3 胡继华;李国源;程智锋;;基于马尔科夫链的公交站间行程时间预测算法[J];交通信息与安全;2014年02期
4 周敏;韩印;姚佼;;基于广义回归神经网络的公交车运行时间预测模型[J];交通与运输(学术版);2013年02期
5 陈旭梅;龚辉波;王景楠;;基于SVM和Kalman滤波的BRT行程时间预测模型研究[J];交通运输系统工程与信息;2012年04期
6 杨小莹;彭刚;王涛;王艳琴;;基于量子遗传粒子滤波的WSN目标跟踪算法[J];计算机工程与设计;2010年23期
7 于滨;蒋永雷;于博;杨忠振;;支持向量机在公交车辆运行时间预测中的应用[J];大连海事大学学报;2008年04期
8 于滨;杨忠振;曾庆成;;基于SVM和Kalman滤波的公交车到站时间预测模型[J];中国公路学报;2008年02期
9 于滨;杨忠振;林剑艺;;应用支持向量机预测公交车运行时间[J];系统工程理论与实践;2007年04期
10 朱志宇,姜长生,张冰;多传感器多机动目标跟踪方法研究进展[J];现代防御技术;2005年05期
相关硕士学位论文 前7条
1 刘翔;卫星姿态控制系统故障模式分析与故障诊断研究[D];哈尔滨工业大学;2015年
2 谢玲;公交到站时间预测及换乘机制的研究[D];苏州大学;2014年
3 王丽杰;基于GPS的智能公交车辆到站时间预测方法研究与系统实现[D];东北大学;2012年
4 牛虎;公交车辆到站时间预测研究[D];北京交通大学;2010年
5 朱丽颖;公交车辆行程时间预测方法研究[D];北京交通大学;2010年
6 李福双;智能公交车辆到站时间预测研究[D];北京交通大学;2009年
7 杨先平;城市道路行程时间预测方法研究[D];吉林大学;2005年
,本文编号:2383279
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2383279.html