当前位置:主页 > 科技论文 > 路桥论文 >

基于DSRC的车联网性能分析

发布时间:2019-01-02 16:29
【摘要】:伴随着道路安全逐渐引起大众的高度重视,车联网的安全应用越来越得到普及。但是安全报文较高的及时性和准确性要求,使得现有的很多协议无从满足。而当下比较流行的DSRC协议栈恰好可以解决车联网应用的QoS问题。本文的目的就是为DSRC协议栈提出一个准确且高效的分析模型,重点在DSRC的数据链路层。期望通过该模型来得到影响网络性能的参数,进而可以通过调整这些参数来提高网络性能,最终更好地满足安全应用的需求。由于DSRC协议栈在其MAC子层使用的是EDCA机制进行信道接入控制,而EDCA机制又是在DCF机制的基础上加入了多级队列分级思想的。所以本文首先介绍了一个既有的基于DCF机制的二维Markov模型,并在该Markov的基础上进行了一系列网络性能的分析。以上述Markov模型为基础,本文基于EDCA机制提出了两个Markov模型:退避窗口变化的二维Markov模型和连续时隙转移的一维Markov模型。在这两个Markov模型的基础上,主要通过数学公式的推导来得到理论分析上的节点吞吐量和节点单跳时延。首先可以由两个Markov模型得到节点的平均碰撞概率和发包概率。然后本文将分为两种情况来讨论最终的节点吞吐量和单跳时延,分别为节点饱和发包情况以及非饱和发包情况。对于饱和发包情况,首先根据吞吐量的定义来计算吞吐量,即单位时间内节点发包大小。然后可以由吞吐量反向计算出节点单跳时延;对于非饱和发包情况,首先根据单跳时延特性计算出单跳时延,以此为基础再计算出节点吞吐量。为了验证上述模型的正确性,本文根据仿真来得到EDCA机制下系统的表现情况,通过对比和参数调整,便可证明本文提出的模型的正确性。在仿真过程中,通过对每种参数进行多次的生成网络拓扑和实验,来尽量减少仿真结果的随机性,保证仿真结果的准确性。通过理论模型分析和仿真实验,最终验证了本文提出的模型的准确性。理论分析数据和仿真实验数据基本吻合。本文提出的理论分析模型得出的网络性能主要受EDCA参数集的AIFS、最小退避窗口和最大退避窗口的影响。网络性能在网络即将进入饱和发包状态时达到最优。
[Abstract]:With the increasing attention of the public on road safety, the safety application of vehicle networking is becoming more and more popular. However, due to the high requirement of timeliness and accuracy of security message, many existing protocols can not be satisfied. At present, the popular DSRC protocol stack can solve the QoS problem of vehicle networking applications. The purpose of this paper is to propose an accurate and efficient analysis model for DSRC stack, focusing on the data link layer of DSRC. It is expected that the parameters that affect the network performance can be obtained by this model, and then these parameters can be adjusted to improve the network performance and finally meet the requirements of security applications. Because the DSRC protocol stack uses the EDCA mechanism to control the channel access in its MAC sublayer, and the EDCA mechanism is based on the DCF mechanism, the multilevel queue hierarchy is added. So this paper first introduces an existing two-dimensional Markov model based on DCF mechanism, and analyzes a series of network performance based on the Markov. Based on the above Markov model, this paper proposes two Markov models based on the EDCA mechanism: the 2-D Markov model with Backoff window variation and the one-dimensional Markov model with continuous slot transition. On the basis of these two Markov models, the theoretical analysis of node throughput and node single-hop delay is obtained by the derivation of mathematical formulas. First, the average collision probability and contract probability can be obtained from two Markov models. Then this paper will discuss the final node throughput and single-hop delay in two cases, namely, the node saturated outsourcing and the unsaturated outsourcing. In the case of saturated contract delivery, the throughput is first calculated according to the definition of throughput, that is, the node size per unit time. Then the single-hop delay can be calculated from the throughput, and the single-hop delay can be calculated according to the characteristic of single-hop delay, and then the node throughput can be calculated based on the characteristic of single-hop delay. In order to verify the correctness of the above model, the performance of the system under the EDCA mechanism is obtained by simulation, and the correctness of the proposed model can be proved by comparison and parameter adjustment. In the process of simulation, the network topology and experiment are generated several times to reduce the randomness of simulation results and ensure the accuracy of simulation results. The accuracy of the proposed model is verified by theoretical model analysis and simulation experiments. The theoretical analysis data are in good agreement with the simulation data. The network performance obtained by the theoretical analysis model presented in this paper is mainly affected by the AIFS, minimum Backoff window and the maximum Backoff window of the EDCA parameter set. The network performance is optimal when the network is about to enter the saturation state.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U495

【相似文献】

相关期刊论文 前10条

1 xiong;美国选定DSRC标准一周年[J];交通世界;2003年04期

2 彭选荣;专用短程通信(DSRC)标准比较分析与关键内容研究[J];广东轻工职业技术学院学报;2003年04期

3 刘富强;项雪琴;邱冬;;车载通信DSRC技术和通信机制研究[J];上海汽车;2007年08期

4 李军;;DSRC技术原理及其应用[J];黑龙江交通科技;2008年12期

5 刘富强;孙斌;王新红;;基于DSRC的车载通信平台设计[J];今日电子;2009年09期

6 冯纯康;周又玲;;DSRC短程通信协议研究[J];无线互联科技;2011年01期

7 张令文;刘留;和雨佳;陶成;;全球车载通信DSRC标准发展及应用[J];公路交通科技;2011年S1期

8 向昊;罗禹贡;张书玮;朱陶;冯辉宗;;多道路调制环境下DSRC鲁棒性研究与仿真[J];科学技术与工程;2013年24期

9 熊辉,史其信;DSRC编织车·路网络神经[J];交通世界;2001年05期

10 赵智明,项洪印;DSRC技术及其在智能交通中的应用[J];中国科技信息;2005年22期

相关会议论文 前6条

1 肖迪;杨蕴;;对自主创新的中国DSRC技术标准的选择思路[A];第二届中国智能交通年会论文集[C];2006年

2 Tien-Chen,Ho;;Research on Specification for Dedicated Short Range Communication[A];2012年计算机应用与系统建模国际会议论文集[C];2012年

3 陈云;蔡华;许宏科;;个性化交通信息服务系统的初步研究[A];第一届全国公路科技创新高层论坛论文集智能交通与机电工程卷[C];2002年

4 林树亮;;基于DSRC技术的多义性路径识别基站应用研究[A];《IT时代周刊》论文专版(第300期)[C];2014年

5 何玉婉;余立建;袁果;;ITS专用短程通信机制研究[A];2006中国西部青年通信学术会议论文集[C];2006年

6 章曙光;;智能交通专用短程通信协议分析[A];城市科学论集[C];2004年

相关重要报纸文章 前1条

1 实习生 范圆圆;车联网将如何改变人们出行?[N];科技日报;2014年

相关博士学位论文 前1条

1 贾树葱;智能交通网络中资源竞争与合作机制研究[D];北京邮电大学;2017年

相关硕士学位论文 前10条

1 李云飞;基于DSRC的车联网性能分析[D];电子科技大学;2017年

2 张三山;ETC系统中DSRC协议软件的设计与实现[D];电子科技大学;2014年

3 柴龙;基于DSRC设备的ETC车道系统软件设计[D];电子科技大学;2015年

4 王国升;基于DSRC的车载自组网QoS研究[D];电子科技大学;2016年

5 田晓庄;基于ETC应用的DSRC空口数据监听分析仪的设计与实现[D];中国科学院大学(工程管理与信息技术学院);2016年

6 王超;ETC系统中DSRC协议研究与设计实现[D];北京交通大学;2017年

7 黄汝唯;ETC技术在水利工程中的应用及DSRC侦听仪软件的设计与实现[D];华中科技大学;2016年

8 郭海陶;智能交通专用短程通信(DSRC)关键技术与应用研究[D];华南理工大学;2010年

9 许泽斌;DSRC设备检测仪的研究与设计[D];武汉理工大学;2012年

10 谢礼猛;基于DSRC车载通信的车辆防撞预警研究[D];江苏科技大学;2017年



本文编号:2398720

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2398720.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3a506***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com