当前位置:主页 > 科技论文 > 路桥论文 >

复杂环境下交通标志的检测

发布时间:2019-01-28 21:30
【摘要】:近几年来智能交通系统(Intelligent Transportation System, ITS)引起了人们越来越多的兴趣和关注。该系统可以减轻人们的驾驶压力,使人们的出行更加自由、安全、可靠。交通标志的检测与识别系统(Traffic Signs Detection and Recognition System)作为ITS的一个必要环节,是智能车或驾驶员获取外界路况信息的可靠保障。交通标志的检测是识别的关键,准确实时的检测出感兴趣区域才会为识别奠定良好的基础。针对复杂的外界环境和行车环境下拍摄到的图像,需要预处理才可以保证检测的准确率。本文首先针对去除运动模糊和浓雾两个预处理环节进行了研究,然后探究了标牌的检测方法。图像的运动模糊复原问题分为匀速直线运动模糊复原和非匀速直线运动模糊复原两类。针对前者,介绍了模糊核尺度和方向估计的普遍方法以及图像复原的基本算法;针对后者本文在强边缘估计模糊核方法上进行了改进,用导向滤波器进行保持边缘去噪,并且在R、G、B三通道进行运算,以增加较小计算量为代价,使该算法可直接处理彩色图像,复原结果保留了图像的颜色信息。针对图像去雾问题,本文采用了去雾领域最近研究成果“黑暗通道(Dark Channel Prior)法”。利用黑暗通道先验知识对雾化图像进行复原,并在透射函数优化方面提出了导向滤波与线性插值相结合的方法。自然拍摄的图像经过预处理后,再进行交通标志的检测,检测环节分为两个部分:(1)针对红、蓝、黄三种颜色在YIQ颜色空间内建立1分量和Q分量的二维正态分布模型,利用待检测像素对三个正态分布模型的符合度来进行颜色分割,然后进行形态学处理,得到二值化图像中的白色区域作为初步感兴趣区域。(2)选取对形状的大小、角度、旋转鲁棒性较强的Hu不变矩特征,针对初步分割得到的感兴趣区域,求得各区域Hu不变矩特征,利用支持向量机(Support Vector Machine, SVM)进行训练得到分类器。剔除不规则类别,保留交通标志特征形状圆形、矩形和三角形类别,作为最终确定的检测结果。本文的主要工作是对去除运动模糊和浓雾的算法进行了研究与改进,使之效果更佳、实时性更好、更符合交通标志预处理的现实要求。在检测阶段,本文算法效果较优,误检率和漏检率低,实时性好,对光照变化和少量遮挡等情况也有较好的表现。
[Abstract]:In recent years, intelligent transportation system (Intelligent Transportation System, ITS) has attracted more and more attention. The system can reduce driving pressure and make people travel more freely, safely and reliably. As a necessary link of ITS, the traffic sign detection and recognition system (Traffic Signs Detection and Recognition System) is a reliable guarantee for intelligent vehicle or driver to obtain information of road condition. Detection of traffic signs is the key to recognition, accurate and real-time detection of the region of interest will lay a good foundation for recognition. In order to ensure the accuracy of detection, preprocessing is needed for the images taken in complex environment and driving environment. In this paper, two preprocessing steps of removing motion blur and dense fog are studied firstly, and then the detection method of sign is explored. Image blur restoration is divided into two categories: uniform linear motion blur restoration and non-uniform linear motion blur restoration. Aiming at the former, the general methods of fuzzy kernel scale and direction estimation and the basic algorithm of image restoration are introduced. For the latter, the fuzzy kernel method of strong edge estimation is improved, the edge preserving denoising is carried out by the guide filter, and the operation is carried out in the three channels of RG GnB at the cost of increasing the computational cost. The algorithm can directly process color images, and the restoration results retain the color information of the images. Aiming at the problem of image de-fogging, this paper adopts the dark channel (Dark Channel Prior) method, which is a recent research result in the field of de-fogging. Based on the prior knowledge of dark channels, the atomization image is restored, and a method of combining guidance filtering with linear interpolation is proposed in the aspect of transmission function optimization. After pre-processing, the natural images are detected by traffic signs. The detection links are divided into two parts: (1) the 2-D normal distribution model of 1 component and Q component in YIQ color space is established for red, blue and yellow colors. The color of the three normal distribution models is segmented by the pixels to be detected, and then the white area in the binary image is obtained as the initial region of interest. (2) the size and angle of the shape are selected. The Hu moment invariant feature with strong rotation robustness is obtained. The Hu moment invariant feature of each region is obtained for the region of interest obtained by initial segmentation. The classifier is trained by support vector machine (SVM) (Support Vector Machine, SVM). Eliminating irregular categories and retaining traffic signs with circular, rectangular and triangular types as the final detection results. The main work of this paper is to study and improve the algorithm of removing motion blur and dense fog, which makes it more effective, more real-time and more in line with the practical requirements of traffic sign preprocessing. In the detection stage, the algorithm is effective, the false detection rate and the missing detection rate are low, the real-time performance is good, and it has good performance to the illumination variation and a small amount of occlusion and so on.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495;TP391.41

【相似文献】

相关期刊论文 前10条

1 魏伟波;芮筱亭;;不变矩方法研究[J];火力与指挥控制;2007年11期

2 徐海卿;李培军;沈毅;;加入不变矩的高分辨率遥感图像分类[J];国土资源遥感;2008年02期

3 苏维国;郭少臣;周继广;宋青;张力;;基于不变矩理论的腐蚀等级评定方法研究[J];装备环境工程;2012年01期

4 钱忠良,王文军;不变矩目标特征描述误差分析和基于上层建筑不变矩的舰船识别[J];电子测量与仪器学报;1994年03期

5 郑全录;赵薇;韩凌;王宏;;基于频谱脸和不变矩人脸识别新方法的研究[J];机械设计与制造;2006年05期

6 高向东;杨大鹏;刘红;;基于不变矩算法的行人识别方法研究[J];郑州大学学报(工学版);2011年02期

7 王福斌;刘杰;陈至坤;王静波;;挖掘机器人铲斗不变矩及改进BP网络识别方法[J];东北大学学报(自然科学版);2012年03期

8 李鹏,朱宏辉;一种改进的不变矩方法在图像目标识别中的应用[J];交通与计算机;2004年02期

9 吴晏,丁明跃,,彭嘉雄;基于图像直方图的一维不变矩研究[J];华中理工大学学报;1996年02期

10 季书芳;张森林;刘妹琴;;基于灰度和梯度不变矩的人脸识别[J];江南大学学报;2006年06期

相关会议论文 前6条

1 夏颖;戴曙光;苏添发;;基于不变矩匹配的车灯零件检测[A];2007'仪表,自动化及先进集成技术大会论文集(二)[C];2007年

2 于洪伟;刘嘉敏;;不变矩特征在汽车标志图像识别中的应用[A];2007北京地区高校研究生学术交流会通信与信息技术会议论文集(上册)[C];2008年

3 肖本贤;陆诚;陈昊;余炎峰;陈荣保;;基于帧间差分法和不变矩特征的运动目标检测与识别[A];第二十七届中国控制会议论文集[C];2008年

4 林宏基;谷灵康;;基于小波不变矩和BPNN的智能监控系统的图像识别[A];第十三届全国图象图形学学术会议论文集[C];2006年

5 叶大鹏;;基于曲线不变矩和2d-HMM的轴心轨迹自动识别系统[A];福建省科协第三届学术年会装备制造业专题学术年会论文集[C];2003年

6 梁文昭;蔡念;郭文婷;许少秋;;交通标志识别新方法[A];第十五届全国图象图形学学术会议论文集[C];2010年

相关博士学位论文 前3条

1 王廷军;矿山搜寻机器人视觉技术及井下矿工识别理论的研究[D];中国矿业大学(北京);2011年

2 刘进;不变量特征的构造及在目标识别中的应用[D];华中科技大学;2004年

3 左文明;脱机手写中文签名鉴别的研究[D];华南理工大学;2004年

相关硕士学位论文 前10条

1 耿海彪;基于不变矩红外线指静脉图像的识别方法研究[D];昆明理工大学;2015年

2 孙朝阳;复杂环境下交通标志的检测[D];山东大学;2015年

3 路鹰;不变矩稳定性及在三维目标识别中的应用[D];华中科技大学;2007年

4 钟志伟;不变矩的光照、模糊不变性及三维航天器的识别算法研究[D];南京航空航天大学;2013年

5 于晔;基于不变矩飞机型号识别方法研究与实现[D];电子科技大学;2009年

6 高璐琰;花类蒙草药显微特征点的不变矩分析[D];内蒙古农业大学;2008年

7 肖斌;基于不变矩的图像几何变换不变性识别研究[D];陕西师范大学;2007年

8 王海霞;基于不变矩的目标识别算法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2004年

9 七十三;基于不变矩的细胞识别及初步应用研究[D];内蒙古农业大学;2008年

10 周忠良;基于小波不变矩的图像识别算法的研究[D];哈尔滨工程大学;2013年



本文编号:2417335

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2417335.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c3a44***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com