基于大规模GPS轨迹数据的出租车服务策略研究
[Abstract]:At present, in the field of urban transportation, GPS equipment has been widely used. For example, almost every taxi is equipped with GPS terminal equipment that transmits data such as taxi location and operation status to traffic management for real-time monitoring. In fact, the taxi drivers' intelligence information, such as service strategy, is hidden in the taxi GPS data. On the one hand, it can guide taxi drivers to improve their operation mode and increase their income. On the other hand, it can also help the management to improve the efficiency of taxi system operation. However, the current analysis of taxi GPS data is relatively preliminary; at the same time, taxi GPS data scale is huge, for example, Xi'an taxi GPS data scale is close to TB level. It has been proved that the traditional information processing platform can not effectively analyze the GPS data of the above scale. In order to solve the above problems, this paper uses big data platform Hadoop to mine and analyze taxi service strategy of GPS data. Hadoop is a popular big data platform. Using parallel computing structure can complete the data analysis work of TB scale and above. At the same time, because of the advantages of open source, expandability, low cost and easy programming, it has become a de facto standard in big data's processing field. Taxi service strategy is a mathematical model for driver service process, which mainly refers to passenger search strategy, passenger transportation strategy, service area preference and so on. After the data preprocessing of GPS data, the operation track of taxi day shift is extracted firstly, and the income of taxi driver is quantified according to the GPS track. According to the rank of income, the higher income and general group of drivers are taken as sample drivers, and the service strategy and usage of the sample drivers are collected and counted. Finally, the relationship between service strategy and income is analyzed. In the test example, the similarities and differences in passenger search strategy, passenger transport strategy and regional preference between different time slots of sample drivers are analyzed and compared.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U495;TP311.13
【参考文献】
相关期刊论文 前10条
1 杜江;张铮;张杰鑫;邰铭;;MapReduce并行编程模型研究综述[J];计算机科学;2015年S1期
2 安实;匡伟明;;出租车GPS数据轨迹化方法研究[J];科学技术与工程;2015年11期
3 杨扬;姚恩建;潘龙;赵楠;;基于GPS数据的出租车路径选择行为研究[J];交通运输系统工程与信息;2015年01期
4 刘智慧;张泉灵;;大数据技术研究综述[J];浙江大学学报(工学版);2014年06期
5 陈吉荣;乐嘉锦;;基于Hadoop生态系统的大数据解决方案综述[J];计算机工程与科学;2013年10期
6 贾欧阳;阮树骅;田兴;杨峻兴;李丹;;MapReduce中Combine优化机制的利用[J];计算机时代;2013年09期
7 许丞;刘洪;谭良;;Hadoop云平台的一种新的任务调度和监控机制[J];计算机科学;2013年01期
8 孟小峰;慈祥;;大数据管理:概念、技术与挑战[J];计算机研究与发展;2013年01期
9 桂智明;向宇;李玉鉴;;基于出租车轨迹的并行城市热点区域发现[J];华中科技大学学报(自然科学版);2012年S1期
10 姚远;王丽芳;蒋泽军;;HDFS一致性管理的研究[J];现代电子技术;2012年08期
相关硕士学位论文 前5条
1 王郑委;基于大数据Hadoop平台的出租车载客热点区域挖掘研究[D];北京交通大学;2016年
2 周小玉;HDFS分布式文件系统存储策略研究[D];电子科技大学;2015年
3 赵利刚;基于出租车轨迹数据的载客情况可视化分析[D];浙江工业大学;2014年
4 王谦;HADOOP作业启动性能优化实践[D];北京交通大学;2012年
5 童明;基于HDFS的分布式存储研究与应用[D];华中科技大学;2012年
,本文编号:2419782
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2419782.html