外置耗能式自定心混凝土桥墩抗震性能研究
[Abstract]:As the substructure of the bridge, the reinforced concrete pier acts as the supporting superstructure to transfer the load. Based on the existing ductility design method, the piers dissipate energy through their own plastic deformation in earthquake, so there is often a large residual deformation after the earthquake, which affects the normal use of the bridge, and brings difficulties to repair. In view of this, a kind of self-centered concrete pier with external energy dissipation device is proposed in this paper. The residual deformation of the pier after the earthquake can be eliminated or greatly reduced, while the damage is concentrated on the additional energy dissipation parts which are easy to replace. At the same time, the application of anticorrosive material improves the durability of bridge piers in chloride environment. Around this new pier, this paper has carried out the structural form, the theoretical analysis of mechanical behavior, the low cycle repeated loading test, the numerical simulation study and the vulnerability analysis under earthquake action. The main works are as follows: (1) study on the structure of self-centered concrete pier. Among them, reinforced concrete piers and caps are prefabricated by the factory. The lower part of the pier is provided with a corbel to fix the energy consuming parts, and the disassembly and replacement of the energy consuming parts can be carried out conveniently. When the overturning moment of the pier exceeds the critical opening moment of the pier-foundation interface, the contact surface is open, and the energy dissipation part appears plastic deformation when the rigid body rotates on the pier. After the earthquake, the contact surface between pier and foundation was reclosed under the action of prestress. In order to avoid the local compressive failure of concrete when the pier rotates, the bottom of the pier is embedded in the sleeve. The sleeve, prestressed tendons and energy dissipation parts are respectively used glass fiber tube, basalt fiber rod and modified aluminum bar to improve their corrosion resistance. (2) theoretical analysis and study on mechanical behavior of self-centered concrete pier. According to the relationship between lateral force and lateral displacement of piers, the deformation and displacement of the structure in each stress stage are deduced based on fine model and simplified model, respectively. The formula of lateral stiffness and equivalent viscous damping coefficient. The theoretical analysis is in good agreement with the experimental results, which provides a reference for the subsequent design of self-centered concrete piers. (3) low cycle repeated loading test of self-centered concrete piers. Fifteen groups of tests were designed to study the seismic behavior of self-centered concrete pier under cyclic load. The effects of prestress size, energy dissipation structure, prestressed tendons and GFRP sleeve on the lateral stiffness, energy dissipation capacity and damage of the structure are investigated. The experimental results show that the self-centered pier presented in this paper has the advantages of self-reposition after earthquake and non-damage of the main structure. (4) numerical simulation of self-centered concrete pier. On the basis of theoretical analysis and experimental study, the numerical simulation method of self-centered concrete pier is studied by using open source finite element software OpenSees, which involves the opening and closing of pier-foundation interface. Self-centring provided by prestressed tendons and energy dissipation of aluminum bars and so on. The numerical simulation results are in good agreement with the experimental data, which shows the effectiveness of the numerical simulation method. (5) vulnerability analysis of self-centered concrete pier. A finite element model of reinforced concrete pier and self-centered concrete pier is established. The incremental dynamic analysis is carried out and the relationship between elastic-plastic response and ground motion strength of the structure is investigated. According to the vulnerability curve, when the maximum displacement angle is taken as the seismic performance index, the transcendental probability of the self-centered pier is close to, but slightly higher than that of the reinforced concrete pier. When the residual displacement angle is taken as the performance index, the surpassing probability of self-centered pier is significantly smaller than that of reinforced concrete pier.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U442.55
【相似文献】
相关期刊论文 前10条
1 金卫华;混凝土桥墩裂缝分析和控制[J];西部探矿工程;2003年10期
2 钟亚伟,李固华;混凝土桥墩表面缺陷的成因分析与控制[J];铁道建筑;2005年06期
3 刘国明;;花瓶式混凝土桥墩裂缝成因分析及加固方法研究[J];交通世界(建养.机械);2010年04期
4 张海彬;;混凝土桥墩裂缝的成因及防治措施分析[J];交通标准化;2012年08期
5 朱f^,陈兴冲;混凝土桥墩的非线性分析[J];铁道学报;1993年01期
6 杨新宝,袁万城,范立础;约束混凝土桥墩的延性性能[J];上海公路;1995年03期
7 李根涛;方从启;;荷载作用下混凝土桥墩耐久性研究进展[J];四川建筑科学研究;2014年01期
8 张护社;混凝土桥墩表面形成“砂线”的原因及其预防和处理[J];铁道建筑;2002年01期
9 毛益松,马海鹏,李源,王升;26m高混凝土桥墩定向控制爆破拆除[J];采矿技术;2005年03期
10 毛益松,马海鹏,李源,王升;26m高混凝土桥墩定向控制爆破拆除[J];爆破;2005年03期
相关会议论文 前6条
1 杨新宝;袁万城;李克非;范立础;;高强混凝土桥墩的抗震性能评估[A];中国土木工程学会桥梁及结构工程学会第十二届年会论文集(下册)[C];1996年
2 陶俊林;李奎;冯力;李棠;;大质量物体撞击柱式混凝土桥墩数值模拟分析[A];四川省力学学会2010年学术大会论文集[C];2010年
3 许国琪;王进昌;;青藏铁路混凝土桥墩耐久性修补及防护技术浅析[A];高速重载与普通铁路桥隧运营管理与检测修理技术论文集(上册)[C];2010年
4 金晓鸿;刘金顶;何传礼;李海祥;胡洁;;防腐综合技术在厦门海沧大桥混凝土桥墩维修工程的应用[A];经济发展方式转变与自主创新——第十二届中国科学技术协会年会(第二卷)[C];2010年
5 柳俊哲;贺智敏;闫成文;;某跨海大桥混凝土桥墩早期裂缝分析及控制[A];2007'中国商品混凝土可持续发展论坛论文集[C];2007年
6 布占宇;陈剑;郑荣跃;;矩形空心截面节段拼装混凝土桥墩抗震性能研究[A];第20届全国结构工程学术会议论文集(第Ⅰ册)[C];2011年
相关重要报纸文章 前1条
1 苏建;高铁混凝土桥墩可抗八级地震[N];中华建筑报;2008年
相关硕士学位论文 前10条
1 曹志亮;外置耗能式自定心混凝土桥墩抗震性能研究[D];东南大学;2015年
2 王军;四周布筋混凝土桥墩开裂刚度的初步分析[D];重庆交通大学;2013年
3 薛晓杰;地震作用下加芯混凝土桥墩的力学性能研究[D];长安大学;2014年
4 廖晶;部分填充圆形钢管混凝土桥墩抗震性能研究[D];沈阳建筑大学;2011年
5 赖安静;装配式钢筋混凝土桥墩的力学性能分析[D];沈阳工业大学;2013年
6 禹长永;钢管核心混凝土桥墩抗震性能研究[D];大连理工大学;2013年
7 段桂珍;海洋环境下混凝土桥墩的冻融耐久性研究[D];上海交通大学;2013年
8 孙治国;基于ANSYS的桥梁极限承载力和滞回特性研究[D];大连理工大学;2006年
9 李根涛;海洋环境下的混凝土桥墩耐久性设计研究[D];上海交通大学;2013年
10 周阿礼;基于Push-over分析的高强钢筋混凝土桥墩抗震性能研究[D];北方工业大学;2012年
,本文编号:2426560
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2426560.html