圆柱桥墩绕流的数值模拟研究
[Abstract]:The flow around a cylinder has always been the object of many theoretical analyses, experimental studies and numerical simulations. However, due to the complexity of the three-dimensional flow around the cylinder, the understanding of the physical nature of the flow phenomenon is still incomplete. In particular, there is no systematic theoretical study on the relationship between the flow around the cylinder and the scour around the cylindrical piers. In this paper, the characteristics of the flow field around the cylindrical pier and the scour characteristics of the pier are studied by using the numerical simulation software of Flow-3D fluid dynamics, and the relationship between the flow around the cylinder and the scour is explored. In order to provide theoretical basis and new research ideas for the study of flow around cylindrical piers and scour. In this paper, the flow around a single cylindrical pier and the scour of the river bed are simulated by using Flow 3D software, and the distribution of the flow field around the pier and the scour characteristics of the river bed are obtained. The results show that: (1) the two-dimensional flow field of the cylindrical pier is close to the two sides, the velocity of flow decreases due to the influence of the side wall of the tank, and the velocity decreases to zero because of the blocking effect of the pier on the flow in front of the pier. After the pier, the flow field becomes smooth and stable with the increase of the flow. (2) when the initial velocity increases, the range of concentrated flow around the pier in front of the pier decreases and the influence range of wake on the back of the pier increases; 3 when the initial velocity is 37cm/s, the maximum velocity of two-dimensional plane reaches 42.3 cm / s, and the two-dimensional velocity distribution of the other two initial velocity has the same law, in which the maximum velocity is 34.4cm / s and 22.2 cm / s, respectively. The longitudinal velocity is the largest in the three-dimensional velocity component. The other two directions have a smaller velocity component but mainly affect the migration direction of the velocity. In this paper, the characteristics of flow around piers under different arrangement modes of water-bearing piers are simulated and analyzed from the aspects of water flow structure, velocity distribution and scour topography. The results show that 1 two rows of 10 piers are arranged in a straight line with different angles between the axial direction and the direction of water flow, and the results are as follows: 1. The pier close to the upstream affects the water flow structure near the downstream pier. The maximum depth of the pier at 60 掳is located at the front row of pier 2, and the maximum value is 11.27 cm at 7.66 cm,t=6s for t ~ (2) 4s, and the water flow structure of the pier near the downstream pier is affected by the bridge pier near the upstream of the pier at 60 掳. The scour depth increases with the increase of time until the scouring and silting balance is finally reached. (2) when the piers are arranged at 90 掳, the velocity of 1 ~ 5 # cylinder has obvious symmetry, and the scour range in front of the middle 3 # pier is the smallest. At 30 掳arrangement, it is found that the flow velocity in front of 1 # pier is obviously higher than that of the other 4 piers, and there is a trend of decreasing gradually, and the oblique dispersion arrangement reduces the water resistance of the pier, and the scour of a row of piers near the left bank is more serious in the 0 掳arrangement, and the flow velocity in front of the pier is obviously higher than that of the other 4 piers. The scour of 1 # and 5 # piers at 30 掳is more serious than that of other piers, and the scour range in front of 2 # and 4 # piers at 60 掳arrangement is larger than that of other piers. In general, through this experimental study, the flow around the pier is simulated by using Flow 3D software. The results obtained are compared with the actual test results, and the two research methods are successfully combined with numerical simulation and practical experiment. The characteristics of the flow distribution and the scour deformation of the river bed are studied and analyzed, which can be used as a reference for similar research in the future.
【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U442.3
【相似文献】
相关期刊论文 前10条
1 王强,刘仰韶,邓桂萍;某受撞击桥墩工作性能的评估[J];广东公路交通;2005年03期
2 梁锴;方理刚;段靓靓;;冲刷对桥墩稳定性影响的有限元分析[J];岩土力学;2006年09期
3 张海东;;桥墩附近基坑开挖对桥墩基础影响的数值分析[J];山西建筑;2011年27期
4 高银水;;浅谈斜坡桥墩设计[J];今日科苑;2007年24期
5 谢寿平;;临近输油管道桥墩基础开挖爆破方案探讨[J];中国科技信息;2008年20期
6 孙兆强;向秀平;尚仲虎;李军;姚建平;寇广增;杨志华;高峰;;魏荆输油管道汉江跨越管桥桥墩基础加固[J];石油工程建设;2011年05期
7 张建军;;桥墩沉降及加固方法分析[J];低温建筑技术;2012年01期
8 覃兆海;陈良志;;大水平力作用下组合墩台在引桥墩设计中的应用[J];港工技术;2009年01期
9 余贤高;吴晓阳;;桥墩基础的水下控制爆破[J];采矿技术;2010年04期
10 何继善,柳建新;综合物探方法在检测桥墩及墩基础中的应用[J];中国有色金属学报;1999年02期
相关会议论文 前10条
1 兰雅梅;刘桦;薛雷平;;桥墩基础上波流力研究[A];第十二届中国海岸工程学术讨论会论文集[C];2005年
2 郭兴杰;程和琴;王冬梅;杨忠勇;宋泽坤;胡浩;;桥墩周边流场模拟分析[A];第十六届中国海洋(岸)工程学术讨论会(下册)[C];2013年
3 杨作兴;彭济南;刘民;;岩锚加桩处理桥墩下沉开裂施工技术[A];地面岩石工程与注浆技术学术研讨会论文集[C];1997年
4 王树卿;;宁岢线48号桥桥墩病害整治[A];高速重载与普通铁路桥隧运营管理与检测修理技术论文集(上册)[C];2010年
5 苏文丽;富立彬;李随敏;郑来国;;宁岢线48号桥桥墩加固整治[A];发展重载运输技术适应经济社会建设——铁路重载运输货车暨工务学术研讨会论文集(工务部分)[C];2011年
6 詹建辉;宛劲松;岳磊;;荆州长江公路大桥通航安全风险评估及桥墩防撞加固措施研究[A];湖北公路交通防灾救灾安保工程专家论坛专辑[C];2008年
7 胡守海;代平玉;宋社强;李胜涛;;兴隆水利枢纽左岸交通桥9号桥墩基础水下高喷加固施工技术[A];2013水利水电地基与基础工程技术——中国水利学会地基与基础工程专业委员会第12次全国学术会议论文集[C];2013年
8 屈匡时;;芜湖长江大桥正桥水中桥墩基础设计[A];第九届全国结构工程学术会议论文集第Ⅱ卷[C];2000年
9 丁明波;陈兴冲;;客运专线桥梁的抗震性能试验研究[A];第十八届全国桥梁学术会议论文集(下册)[C];2008年
10 谢建纲;;武汉长汉公路桥特大型深水桥墩基础精密控制测量[A];全国桥梁结构学术大会论文集(上册)[C];1992年
相关重要报纸文章 前4条
1 黄悦平;除险加固为韶城桥梁强筋骨[N];韶关日报;2006年
2 记者 裘立华 舒继华;“优良工程”“桥裂裂”,为何无人被问责[N];新华每日电讯;2010年
3 本报记者 李江涛 通讯员 左旭;让每座桥都成为城市景点[N];洛阳日报;2009年
4 新华社记者 裘立华 舒继华;优良工程何以退化成“桥裂裂”[N];中国安全生产报;2010年
相关博士学位论文 前2条
1 庄元;桥梁通航论证关键技术研究[D];武汉理工大学;2008年
2 陈楚龙;船撞桥墩仿真分析及下构安全概率评估[D];华中科技大学;2014年
相关硕士学位论文 前10条
1 阿不都热合曼(Shukur Rahman);兰青线湟水河2号桥桥墩基础加固研究[D];西南交通大学;2015年
2 俞艳;山区河流桥墩基础冲刷计算与防护方法研究[D];西南科技大学;2015年
3 吉鸿敏;圆柱桥墩绕流的数值模拟研究[D];西北农林科技大学;2015年
4 郑毅;既有铁路桥墩健全度评估方法及自振特性研究[D];北京交通大学;2010年
5 许保华;桥墩周围通航宽度影响研究[D];河海大学;2007年
6 郭超;桥墩冲刷与波流力的试验研究[D];清华大学;2012年
7 王坤;海洋深水环境桥墩基础抗冲刷技术研究[D];长安大学;2013年
8 高苏;基于有限元法的桥墩对桥跨横向振动的影响研究[D];东南大学;2006年
9 于哲;城市高架桥梁基础约束刚度识别及桥墩抗震性能评估研究[D];中南大学;2010年
10 刘永吉;考虑流固耦合效应的水中桥墩动力响应分析[D];重庆交通大学;2012年
,本文编号:2456259
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2456259.html