基于目标跟踪的车流量统计系统研究
[Abstract]:The traffic flow statistics system based on video image is one of the important research topics of intelligent transportation system. It uses image processing and artificial intelligence technology to analyze and process the recorded traffic flow video. The number of vehicles passing through the road in a certain period of time is obtained, the basic data of follow-up processing are provided for the intelligent transportation system, the intelligent dispatching of the road is realized, and the utilization rate of pavement resources is improved. In practical application, the traffic flow statistics method based on target tracking often has shadow problem because of the influence of illumination. when the shadow area is large and the driving distance between vehicles is close, the vehicle adhesion will occur in the image. Thus, the accuracy of traffic flow statistics system is affected. Therefore, vehicle shadow elimination algorithm and adhesion vehicle segmentation algorithm are the key technologies of traffic flow statistics system. Based on the study of shadow elimination and adhesion segmentation algorithms commonly used in traffic flow statistics, a traffic flow statistics system based on target tracking is implemented in this paper. The main research work of this paper is as follows: 1. In order to solve the problem of low accuracy of vehicle curve segmentation algorithm for vehicle edge occlusion, an adhesive vehicle segmentation algorithm based on concave analysis is improved. The simulation results show that compared with the vehicle edge occlusion vehicle curve segmentation algorithm, the proposed algorithm has higher accuracy in vehicle segmentation, which can effectively improve the accuracy of the traffic flow statistics system. 2. The common shadow elimination algorithms (HSV color feature algorithm, gradient feature algorithm) are analyzed and studied. In order to solve the problem of low elimination rate of the above two algorithms, a shadow elimination algorithm based on the fusion of HSV color features and gradient features is proposed. The simulation results show that the algorithm proposed in this paper has a high shadow elimination rate and improves the robustness of vehicle detection to a certain extent. Based on Visual Studio 2010 integrated development environment, a traffic flow statistics system based on target tracking is implemented by using MFC application framework and Open CV computer visual library. The experimental results show that the system designed in this paper has good real-time performance and can overcome the influence of light to a certain extent.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491;TP391.41
【参考文献】
相关期刊论文 前10条
1 杨滨;陈先意;胡伟峰;;基于阴影检测模型的图像拼接盲取证[J];应用科学学报;2016年05期
2 吴秋爽;;基于计算机视觉的智能交通监控系统[J];智能城市;2016年03期
3 鲁学军;武鹏达;郭旭东;;二值形态闭运算在优质耕地集中连片划定中的应用[J];中国图象图形学报;2016年02期
4 刘燕妮;张贵仓;安静;;基于数学形态学的双直方图均衡化图像增强算法[J];计算机工程;2016年01期
5 王同;彭祺;屠礼芬;;基于OpenCV的运动目标检测软件实现[J];软件导刊;2015年12期
6 韩延彬;郭晓鹏;魏延文;李恒建;;RGB和HSI颜色空间的一种改进的阴影消除算法[J];智能系统学报;2015年05期
7 沈阳;宓超;凤宇飞;;形态学开运算在车型图像去噪中的应用[J];中国科技信息;2015年18期
8 戴橙;陈胜;;改进的分水岭算法用于X光医学图像分割[J];电子科技;2015年06期
9 魏景璇;鲁燃;张艳辉;;基于动态阈值和命名实体的双重过滤话题追踪[J];计算机应用研究;2015年04期
10 王平;齐帅;张力;;一种强粘连与畸变巨噬细胞图像的分割方法[J];计算机应用研究;2014年12期
相关硕士学位论文 前9条
1 黄霞;基于视觉的交通车流量统计[D];湘潭大学;2016年
2 苗永禄;基于视频图像处理的车辆检测与跟踪方法研究[D];长安大学;2014年
3 田辉;基于视频的车流量统计算法研究[D];大连海事大学;2012年
4 墨芹;运动车辆视频检测与车流量检测方法的研究[D];中南大学;2012年
5 田立明;基于视频的高速公路车流量检测系统研究与实现[D];山东大学;2012年
6 华桃桃;人脸识别中基于子空间的特征提取方法研究[D];重庆大学;2012年
7 曾诗;视频序列中的运动目标分类算法研究[D];南京邮电大学;2012年
8 苏书杰;视频检测系统中的背景检测及更新算法研究[D];长安大学;2009年
9 王晋;基于运动目标跟踪的车流量统计技术研究[D];昆明理工大学;2009年
,本文编号:2477127
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2477127.html