道路交通环境下车辆前景提取算法研究
[Abstract]:Intelligent Transportation system (Intelligent Transportation Systems,ITS) covers all aspects of traffic field. Traffic flow data acquisition and traffic behavior automatic analysis based on video image conform to the development of ITS and become a hot research field of ITS. As one of the basic and important steps in this research, vehicle prospect extraction based on image processing has important theoretical research significance and potential application value in the development of ITS. In this paper, vehicle foreground extraction is divided into two steps: vehicle motion detection and vehicle shadow elimination. For the purpose of vehicle foreground extraction, vehicle motion detection and vehicle shadow elimination are analyzed and studied. First of all, the principle of mixed Gao Si model (Gaussian Mixture Model,GMM is analyzed in detail, and the defects of GMM and its causes are expounded. In order to solve the problem that the background modeling of GMM is simple and vulnerable to the disturbance of vehicle prospect at the initial time, this paper introduces the Grabbs anomaly criterion, and proposes a GMM background modeling method based on time-domain constrained average. According to the improved inter-frame difference method and GMM background updating principle, a vehicle motion detection algorithm based on four-partition adaptive GMM is proposed to solve the vehicle hole problem, ghost problem and vehicle parking error detection problem existing in traditional GMM. Then, on the basis of shadow analysis, it is pointed out that the shadow elimination of the vehicle in this paper refers to the elimination of the shadow cast on the driving vehicle. In order to solve the problem of shadow elimination by using color features alone, this paper weakens the shadow by Log domain difference, and obtains the area which is sure to be the foreground of the vehicle, so as to constrain the shadow elimination method based on the color space feature of HSV. A vehicle shadow elimination method based on log domain difference and HSV color space feature is proposed. Finally, the proposed algorithm is analyzed by simulation experiments, and the filling rate of voids is defined according to the basic mathematical knowledge, so as to quantitatively analyze the degree of solving the problem of vehicle voids. The experimental results show that the improved GMM algorithm can overcome the defects of the original GMM, and the proposed vehicle shadow elimination method has good performance. The reliability of vehicle prospect extraction through vehicle motion detection and vehicle shadow elimination is verified.
【学位授予单位】:长安大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U495;TP391.41
【相似文献】
相关期刊论文 前10条
1 魏厚明;刘冬香;曹卫群;杨刚;;布告板云树木模型的阴影快速生成与绘制[J];计算机辅助设计与图形学学报;2011年05期
2 山深闻;;关于阴影检验中的两个问题[J];光学仪器;1988年01期
3 杨宏烈;建筑阴影构成艺术浅识[J];华中建筑;1998年01期
4 章曼;吕伟伟;吴恩华;;高次幂函数逼近的阴影图反走样算法[J];计算机辅助设计与图形学学报;2010年01期
5 李胜亮;管莉;张凌;潘伟;郝重阳;;基于阴影映射的实时软阴影算法及实现[J];弹箭与制导学报;2007年01期
6 任鸿翔;尹勇;金一丞;;大规模场景中实时阴影的绘制[J];大连海事大学学报;2008年01期
7 曾晓一;何援军;;软阴影算法及实现[J];工程图学学报;2010年04期
8 沈笠;杨宝光;冯结青;;多层阴影图轮廓边背投软影算法[J];计算机辅助设计与图形学学报;2013年09期
9 王荣本,纪寿文,郭克友,徐友春;识别阴影中智能车辆导航路径的神经网络方法研究[J];公路交通科技;2002年05期
10 张方彦;杨猛;刘金刚;;一种改进的实时软阴影算法的设计与实现[J];空军工程大学学报(自然科学版);2012年02期
相关会议论文 前6条
1 薛光琦;;阴影地形法的技术问题及应用[A];中国地质科学院矿床地质研究所文集(27)[C];1994年
2 刘元琼;雷海乐;赵学森;;背光阴影成像技术初步研究[A];第十届中国核靶技术学术交流会摘要集[C];2009年
3 曹雪峰;万刚;李锋;李科;;三维地形仿真场景中实时阴影反走样技术[A];第十届中国科协年会论文集(一)[C];2008年
4 安宁宇;袁春;钟玉琢;;一种对象空间的软阴影实时渲染方法[A];第六届和谐人机环境联合学术会议(HHME2010)、第19届全国多媒体学术会议(NCMT2010)、第6届全国人机交互学术会议(CHCI2010)、第5届全国普适计算学术会议(PCC2010)论文集[C];2010年
5 陈皓;刘晓平;;基于投影距离的改进软阴影生成算法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
6 韩志q,
本文编号:2480492
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2480492.html