基于轨迹数据的城市交通需求热点区域推荐研究
[Abstract]:At present, with the continuous acceleration of urbanization, the increasing living standards of people lead to the rapid growth of the number of private cars, and the pressure of urban road traffic is increasing. It is urgent to analyze a large number of traffic data to guide municipal road planning and improve the level of urban management, and to find the law of urban operation from the complicated traffic data. At the same time, with the rapid development of wireless communication technology and intelligent mobile terminal, the trajectory data acquisition of mobile objects becomes more convenient. Taxi trajectory data has become a hot research topic in recent years because of its easy collection, wide distribution and large amount of data, which makes the data mining of taxi GPS trajectory data become a hot research topic in recent years. At present, there are some problems in taxi industry, such as high no-load rate and difficult taxi ride, so it is of great significance to provide passenger recommendation service for taxi users. In this paper, through the study of a large number of taxi GPS data, the taxi passenger stop point is analyzed, the hidden law in the track data is found by using data mining technology, and the hot spot area and recommendation method of taxi passenger are deeply studied. Provide hot spot recommendation service for taxi users. The purpose of this paper is to reduce taxi no-load cruise, reduce urban traffic pollution, relieve traffic pressure and provide valuable reference for taxi operation and management. First of all, the taxi GPS data and road network data are preprocessed for later data analysis and processing. The network is edited twice on ArcGIS platform, the data of road network is topologically processed, the attribute field is perfected and the network data set is established to verify it. The map matching method suitable for low frequency sampling is adopted, and the road network topology and speed constraints are added to calibrate the vehicle position information with the road network information on the electronic map to determine the actual position of the vehicle in the road network. Secondly, by using the statistical analysis method, the variation of taxi passenger stop with time is obtained, and a semi-supervised nearest neighbor propagation algorithm based on particle swarm optimization (PSO-SAP) is proposed, which can be used to discover the hot spots of taxi candidates. The PSO-SAP algorithm is integrated on ArcGIS platform, and the trajectory data are analyzed in time and space. Combined with ArcGIS platform, the hot spot area display is realized, and the distribution of taxi passenger hot spot area in different time periods is analyzed. Finally, a hot area with high probability of taxi user recommendation is proposed, which combines the trust degree of taxi users. The experimental results show that the recommendation results have high accuracy.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;U491
【参考文献】
相关期刊论文 前10条
1 石陆魁;张延茹;张欣;;基于时空模式的轨迹数据聚类算法[J];计算机应用;2017年03期
2 杜胜兰;李枫;黄长青;刘子政;李默颖;栗法;王英;;基于轨迹数据的武汉大学学生行为规律分析[J];测绘地理信息;2017年01期
3 张俊涛;武芳;张浩;;利用出租车轨迹数据挖掘城市居民出行特征[J];地理与地理信息科学;2015年06期
4 廖律超;蒋新华;邹复民;李璐明;赖宏图;;浮动车轨迹数据聚类的有向密度方法[J];地球信息科学学报;2015年10期
5 吴笛;杜云艳;易嘉伟;魏海涛;莫洋;;基于密度的轨迹时空聚类分析[J];地球信息科学学报;2015年10期
6 张仕学;李石君;余伟;任洪伟;;突发事件人群异常聚集热点区域预测[J];中国安全科学学报;2015年09期
7 王超;杨静;张健沛;;基于轨迹位置形状相似性的隐私保护算法[J];通信学报;2015年02期
8 吴俊伟;朱云龙;库涛;王亮;;基于网格聚类的热点路径探测[J];吉林大学学报(工学版);2015年01期
9 郑宇;;城市计算概述[J];武汉大学学报(信息科学版);2015年01期
10 张健钦;仇培元;杜明义;;基于时空轨迹数据的出行特征挖掘方法[J];交通运输系统工程与信息;2014年06期
相关博士学位论文 前5条
1 甘海涛;半监督聚类与分类算法研究[D];华中科技大学;2014年
2 袁晶;大规模轨迹数据的检索、挖掘和应用[D];中国科学技术大学;2012年
3 袁冠;移动对象轨迹数据挖掘方法研究[D];中国矿业大学;2012年
4 张治华;基于GPS轨迹的出行信息提取研究[D];华东师范大学;2010年
5 杨肖丽;城市化进程中农民工的迁移行为模式及其决定[D];沈阳农业大学;2009年
相关硕士学位论文 前10条
1 宋乐怡;海量出租车轨迹数据分析与位置推荐服务[D];华东师范大学;2015年
2 栾丽娜;基于GPS数据的城市出租车运营分析与数据挖掘[D];山东大学;2015年
3 李衢伶;基于GPS轨迹的出租车载客路径智能推荐[D];湖南科技大学;2014年
4 刘盼盼;基于空间聚类和Weka平台的出租车载客热点区域挖掘研究[D];吉林大学;2014年
5 潘梅;基于OpenStreetMap的移动位置导航系统的设计与实现[D];西安电子科技大学;2014年
6 齐林;基于GPS数据的出租车交通运行特性研究及应用[D];哈尔滨工业大学;2013年
7 邹珍;基于GPS的浮动车数据与实地图匹配的算法研究[D];武汉理工大学;2013年
8 童晓君;基于出租车GPS数据的居民出行行为分析[D];中南大学;2012年
9 寻峗;实时移动路线推荐系统的研究与实现[D];上海交通大学;2012年
10 谭川豫;移动对象轨迹分析技术研究[D];国防科学技术大学;2010年
,本文编号:2485439
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2485439.html