基于智能技术的交通流区间预测方法研究
[Abstract]:With the continuous development of urbanization, the contradiction between the rapid growth of traffic flow and the slow growth of road infrastructure is becoming more and more prominent. Especially, the congestion phenomenon of mega-cities is becoming more and more serious, which has seriously restricted the sustainable development strategy of urban traffic in our country. Intelligent urban traffic system (ITS) is regarded as one of the effective methods to alleviate these problems. Therefore, based on the multi-section similarity, the traffic flow interval prediction method is discussed in this paper. The idea of this paper is based on the obtained historical data, based on the existing traffic flow prediction technology, the change law of traffic flow data is analyzed, its development trend is studied and summarized, in order to achieve the purpose of accurate prediction of the change trend of traffic flow in the future. The main research work of this paper is as follows: (1) the internal correlation of traffic flow data is analyzed, and the correlation and characteristics of traffic flow data are discussed and processed with time series as a tool. (2) the cross-section correlation of traffic flow data is analyzed, two or more adjacent points are regarded as a whole, and the changing trend of traffic flow and many factors causing the change are analyzed. A prediction algorithm based on multi-section correlation is proposed, and the corresponding analysis method is given. (3) combined with the above analysis methods based on time and space correlation, the conventional traffic flow prediction algorithm is improved, and the confidence interval of the point prediction results is calculated, thus the prediction interval is obtained, and the traffic flow interval prediction algorithm based on multi-section correlation is proposed. The main body of the prediction method is the support vector machine (SVM) regression model. (4) the above prediction method is further improved and enhanced, and the Boosting enhancement algorithm is introduced. By using resampling technology to reset and combine the weights automatically, the algorithm hopes to improve the performance of the classifiers by selecting and training the data many times. The core idea is to train the samples which are relatively difficult to be classified correctly when training the new classifiers.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U491.14
【参考文献】
相关期刊论文 前10条
1 刘齐林;曾玲;曾祥艳;;基于支持向量机的区间模糊数时间序列预测[J];数学的实践与认识;2015年22期
2 刘岩;张宁;邵星杰;;城市轨道交通断面客流短时预测[J];都市快轨交通;2015年01期
3 周桐;杨智勇;孙棣华;魏方强;;分车型的高速公路短时交通流量预测方法研究[J];计算机应用研究;2015年07期
4 王惟;;一种基于粒子群优化SVM的交通流量预测方法[J];运城学院学报;2014年02期
5 朱征宇;刘琳;崔明;;一种结合SVM与卡尔曼滤波的短时交通流预测模型[J];计算机科学;2013年10期
6 袁健;范炳全;;交通流短时预测研究进展[J];城市交通;2012年06期
7 于滨;邬珊华;王明华;赵志宏;;K近邻短时交通流预测模型[J];交通运输工程学报;2012年02期
8 丁世飞;齐丙娟;谭红艳;;支持向量机理论与算法研究综述[J];电子科技大学学报;2011年01期
9 姚智胜;邵春福;;基于状态空间模型的道路交通状态多点时间序列预测[J];中国公路学报;2007年04期
10 杨兆升;王媛;管青;;基于支持向量机方法的短时交通流量预测方法[J];吉林大学学报(工学版);2006年06期
相关博士学位论文 前3条
1 傅贵;城市智能交通动态预测模型的研究及应用[D];华南理工大学;2014年
2 崔立成;基于多断面信息的城市道路网交通流预测方法研究[D];大连海事大学;2012年
3 李星毅;基于相似性的交通流分析方法[D];北京交通大学;2010年
相关硕士学位论文 前1条
1 刘海红;交通流状态非参数辨识关键理论及方法研究[D];山东理工大学;2007年
,本文编号:2498694
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2498694.html