运用不确定性方法估计高速公路基本路段交通状态
[Abstract]:The accurate estimation of highway traffic condition is the key to grasp the traffic operation of expressway. The single traffic flow parameter can only indirectly reflect the actual traffic operation condition. Cluster analysis according to many different traffic flow parameters is a typical method of location traffic state estimation, but the clustering results are very sensitive to the number of samples. On the other hand, at present, the estimation of the traffic state of the road section generally only considers the travel time or the travel speed, because of the limitation of the data acquisition means, there is a certain uncertainty in the estimated traffic state. The research on these problems is of practical significance to improve the application effect of highway traffic state estimation system. In this paper, the basic section of expressway is taken as the research object, and the uncertainty method is used to estimate the location and traffic state of the basic section of expressway. In the traffic state estimation of the location, the uneven analysis of the spatial distribution of the sample points of the traffic flow parameters is taken as the breakthrough point, and the influence of the imbalance of the number of samples on the clustering results of the traffic state is solved. In the traffic state estimation of the road section, the uncertainty problem of the traffic state estimation is solved by the method of multi-source data fusion. The main research contents are as follows: 1. Analysis of traffic flow parameters in basic sections of expressway. Firstly, the temporal correlation of location traffic flow parameters and the imbalance of spatial distribution of sample points are analyzed. Then, the uncertainty of road section traffic flow parameters estimation traffic state is analyzed, which lays a foundation for the establishment of traffic state estimation model of rear location and road section. (2) the establishment of highway location traffic state estimation model based on characteristic parameter weighted GEFCM algorithm. In view of the shortcomings of traditional fuzzy clustering algorithm in traffic state estimation, combined with the imbalance of sample distribution and the difference of influence weight of different characteristic parameters on clustering, the location traffic state estimation model of feature parameter weighted GEFCM algorithm is established, and the weight values of different characteristic parameters in the model are determined by principal component analysis (PCA). The experimental results show that the proposed method has better reliability and adaptability. (3) the traffic state estimation model of expressway section based on dynamic Bayesian network multi-source data fusion is established. In order to solve the uncertainty problem of using relative density of road section and average travel time of road section to estimate traffic state, dynamic Bayesian network is introduced. On the basis of selecting relative density, average travel time and traffic state as node variables, the topological structure of the network is determined, and finally a dynamic Bayesian network model for state estimation is established. The experimental results show that the proposed method has better reliability. Finally, the system is designed and implemented and applied to the location and traffic state estimation of some sections of Yuwu Expressway. The results show that the proposed method has higher congestion discrimination rate and lower congestion misjudgment rate compared with the estimation results of location and road traffic state.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:U491
【相似文献】
相关期刊论文 前10条
1 韩悦臻,曹三鹏;城市道路交通状态指标体系设计探讨[J];公路;2005年06期
2 皮晓亮;王正;韩皓;孙亚;;基于环形线圈检测器采集信息的交通状态分类方法应用研究[J];公路交通科技;2006年04期
3 劳云腾;杨晓光;云美萍;刘竞宇;;交通状态检测方法的评价研究[J];交通与计算机;2006年06期
4 王伟;杨兆升;李贻武;刘新杰;陈昕;;基于信息协同的子区交通状态加权计算与判别方法[J];吉林大学学报(工学版);2007年03期
5 戢晓峰;;城市道路交通状态分析方法回顾与展望[J];道路交通与安全;2008年03期
6 李娟;罗霞;姚琛;;基于多源数据的交通状态判定研究[J];铁道运输与经济;2009年03期
7 李清泉;高德荃;杨必胜;;基于模糊支持向量机的城市道路交通状态分类[J];吉林大学学报(工学版);2009年S2期
8 强添纲;邱洁;;基于熵和耗散结构理论的道路交通状态演变机理[J];交通标准化;2010年Z1期
9 窦慧丽;王国华;;基于模糊聚类和判别分析的交通状态提取算法[J];交通信息与安全;2010年02期
10 曹成涛;崔凤;林晓辉;;基于神经网络的交通状态模糊判别方法[J];科学技术与工程;2010年21期
相关会议论文 前3条
1 郭义荣;张晓栋;董宝田;吴蕾;;基于模糊理论的交通状态快速识别与跃迁转变方法[A];2013年中国智能自动化学术会议论文集(第四分册)[C];2013年
2 窦瑞;云美萍;杨晓光;;基于视频录像的交通状态判别算法准确度评测[A];第七届中国智能交通年会优秀论文集——智能交通技术[C];2012年
3 余碧莹;邵春福;;基于时空模型的道路网交通状态预测[A];2008第四届中国智能交通年会论文集[C];2008年
相关博士学位论文 前8条
1 徐东伟;道路交通状态多维多粒度获取方法研究[D];北京交通大学;2014年
2 宋淑敏;非常态下异常道路交通状态信息获取技术研究[D];吉林大学;2012年
3 许昱玮;VANETs中面向交通状态的车辆主动探测方法研究[D];南开大学;2012年
4 孙晓亮;城市道路交通状态评价和预测方法及应用研究[D];北京交通大学;2013年
5 钱U,
本文编号:2498827
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2498827.html