当前位置:主页 > 科技论文 > 路桥论文 >

高含量弹性体改性沥青的制备、结构与性能研究

发布时间:2020-12-28 17:34
  沥青路面受交通荷载增加、苛刻气候条件和养护不及时的影响,服务质量和使用寿命受到严峻挑战,而开发高性能、低成本和易加工的改性沥青来满足这一挑战具有重要意义。通常高等级沥青路面普遍使用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)(3%-5%wt)弹性体改性沥青,而高含量(>6%wt)的SBS改性沥青中SBS可形成连续相,粘结性能极大提高,可满足高应变的高性能路面,如桥面铺装、高速公路的薄磨损层和多孔沥青路面。然而,高含量SBS改性沥青存在成本较高、相容性差且耐老化性不足的弊病,限制了其推广应用。日益增加的废弃轮胎磨制的胶粉(CR)可作为替代物,充当弹性粘合剂加入,从而提高道路性能。然而,CR固有的三维交联网络,限制了其在沥青中的均匀分散。本文目的是在阐明多孔路面中高含量SBS改性沥青(HiMASBS)的结构变化和老化机理基础上,通过调控废轮胎橡胶粉的降解程度,研究含有不同降解程度CR的SBS/CR复合改性沥青(HiMAHRR/SBS)结构与性能关系,制备高性价比的高含量弹性体改性沥青。首先,研究了高含量改性沥青混合料(HiMASBS... 

【文章来源】:上海交通大学上海市 211工程院校 985工程院校 教育部直属院校

【文章页数】:216 页

【学位级别】:博士

【文章目录】:
摘要
abstract
List of abbreviations and symbols
CHAPTER1 INTRODUCTION
    1.1.Preface
    1.2.Purpose and Significance
    1.3.Organization of Dissertation
    LITRATURE REVIEW
        1.4.Structure and chemistry of asphalt
        1.5.Different types of asphalts
        1.6.Polymer modified asphalt(PMA)
            1.6.1.Historic perspectives
            1.6.2.Prevalent polymers for asphalt modification
            1.6.3.Chemistry of polymer modified asphalt(PMA)
            1.6.4.Compatibility of polymers with asphalt
            1.6.5.Interaction between Polymer and Asphalt
            1.6.6.Chemistry of Plastomers
            1.6.7.Chemistry of thermoplastic elastomers
        1.7.Crumb rubber modified asphalt(CRMA)mixtures
            1.7.1.Production of Crumb Rubber(CR)by different reclamation process
                1.7.1.1.Thermo-mechanical devulcanization or degradation
                1.7.1.2.Mechano-chemical devulcanization
            1.7.2.Interaction of crumb rubber with asphalt
            1.7.3.Stabilization of CRMA
        1.8.High performance modified asphalt
            1.8.1.Highly modified asphalt(HiMA)
                1.8.1.1.Principle of highly-modified asphalt(HiMA)
                1.8.1.2.Use of HiMA in Porous asphalt pavement
            1.8.2.SBS/CR modified asphalt
        1.9.Impact of aging on the properties of base asphalt
            1.9.1.Defining asphalt aging
            1.9.2.Types of Aging
            1.9.3.Mechanisms associated with asphalt aging
                1.9.3.1.Volatilization
                1.9.3.2.Oxidation
                1.9.3.3.Void content
                1.9.3.4.Steric hardening(Thixotropy)
        1.10.Variabilities in binder properties of base asphalt
        1.11.Laboratory techniques,testing and models against aging
            1.11.1.Techniques used to simulate STA
                1.11.1.1.Thin Film Oven Test(TFOT)
                1.11.1.2.Rolling Thin Film Oven Test(RTFOT)
                1.11.1.3.Modified technique of RTFOT
                1.11.1.4.Nitrogen Rolling Thin Film Oven Test(NRTFOT)
                1.11.1.5.Rotating Flask Test(RFT,EN12607-3)
            1.11.2.Techniques used to simulate LTA
                1.11.2.1.Aging Vessel(PAV)
                1.11.2.2.The Rotating Cylinder Aging Test(RCAT)
        1.12.Physical and chemical aging tests
        1.13.Aging models
        1.14.Impact of aging on the properties of modified asphalt(MA)
            1.14.1.Oxidative aging of MA
                1.14.1.1.Thermo-oxidative aging of SBSMA
                1.14.1.2.Thermo-oxidative aging of CRMA
            1.14.2.UV aging of MA
                1.14.2.1.UV aging of SBSMA
                1.14.2.2.UV aging of CRMA
            1.14.3.Natural weathering of MA
                1.14.3.1.Weathering of SBSMA
                1.14.3.2.Weathering of CRMA
        1.15.Conclusion remarks
    References
CHAPTER2 In-field aging process of high content SBS modified asphalt
    2.1.Introduction
    2.2.Experimental
        2.2.1.Materials and preparation
        2.2.2.Cutting of cores in different layers
        2.2.3.Binder extraction
    2.3.Characterization techniques
        2.3.1.Structural characterization by FTIR analysis
        2.3.2.Gel permeation chromatography(GPC)
        2.3.3.Dynamic rheological measurements
        2.3.4.Thermo gravimetric analysis(TGA)
        2.3.5.Morphological analysis by Polarized optical microscopy(POM)
        2.3.6.Scanning electron microscopy(SEM)
    2.4.Results and Discussion
        2.4.1.FTIR analysis of different recovered binders
        2.4.2.GPC analysis of different recovered binders
        2.4.3.In-field aging and rheological properties
        2.4.4.Thermal analysis
        2.4.5.Polarized optical microscopy(POM)
        2.4.6.Scanning electron microscope(SEM)
    2.5.Conclusion
    References
CHAPTER3 Improving the aging resistance of SBS modified asphalt with the addition of highly reclaimed rubber
    3.1.Introduction
    3.2.Experimental
        3.2.1.Materials
HRR/SBS)">        3.2.2.Preparations of HRRs and their composite modified asphalts(HiMAHRR/SBS)
            3.2.2.1.Preparation of HRRs
HRR/SBS)">            3.2.2.2.Preparation of HRR/SBS modified asphalts(HiMAHRR/SBS)
HRR/SBS vulcanization with sulfur">            3.2.2.3.HiMAHRR/SBS vulcanization with sulfur
        3.2.3.Tests Conducted
            3.2.3.1.Penetration test
            3.2.3.2.Ductility
            3.2.3.3.Softening point
            3.2.3.4.Dynamic viscosity
            3.2.3.5.Elastic recovery
            3.2.3.6.Phase separation(Storage stability)
            3.2.3.7.Aging procedures
    3.3.Characterization
        3.3.1.Dynamic rheological property test
        3.3.2.Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy(ATR-FTIR)
        3.3.3.Morphological analysis
    3.4.Results and discussion
HRR/SBS">        3.4.1.Conventional physical properties of HiMAHRR/SBS
  •             3.4.1.1.Effect of reclamation temperature of HRR on physical properties of SBSMA
                3.4.1.2.Effect of HRR content on the properties of SBSMA
    HRR/SBS">            3.4.1.3.Effect of tire type on the properties of HiMAHRR/SBS
  •             3.4.1.4.Effect of Crosslinking on the properties of HiMAHRR/SBS
  •             3.4.1.5.Effect of different HRRs on processing viscosity of HiMAHRR/SBS
  •             3.4.1.6.Effect of crosslinking on the storage stability of HiMAHRR/SBS
  •         3.4.2.FTIR spectroscopy analysis
    HRR/SBS">        3.4.3.Morphology of HiMAHRR/SBS
  •     3.5.Conclusion
        References
    DR/SBS)">CHAPTER4 Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber(HiMADR/SBS)
        4.1.Introduction
        4.2.Experimental and methodology
            4.2.1.Materials
            4.2.2.Samples preparation
                4.2.2.1.Thermo-mechanical degradation of tire rubbers
    DR/SBS)">            4.2.2.2.Preparation of modified asphalts(HiMADR/SBS)
            4.2.3.Tests and analysis
                4.2.3.1.Sol-gel fraction measurements of DRs
                4.2.3.2.Rheological properties of DRs
            4.2.4.Thermal analysis of HiMADR/SBS
                4.2.4.1.Thermo-gravimetric analysis(TGA/DTG)
                4.2.4.2.Differential scanning calorimetry(DSC)
            4.2.5.Dynamic mechanical analysis(DMA)
            4.2.6.Fluorescent microscopy
        4.3.Results and discussion
            4.3.1.Composition and rheological analysis of different DRs
    DR/SBS">        4.3.2.Thermal analysis of HiMADR/SBS
  •             4.3.2.1.TGA
                4.3.2.2.DSC
    DR/SBS at lower temperature range">        4.3.3.Rheological properties of HiMADR/SBS at lower temperature range
            4.3.4.Morphology and physical models to explain the mechanism of interaction between DR and SBSMA
        4.4.Conclusion
        References
    CHAPTER5 Preparation and Performance of Hot Mix Asphalt Mixture with High Viscosity Modified Asphalt
        5.1.Introduction
        5.2.Experimental
            5.2.1.Materials and preparation
            5.2.2.Tests conducted
                5.2.2.1.Ductility
                5.2.2.2.Softening point
                5.2.2.3.Penetration test
                5.2.2.4.Marshall stability test
                5.2.2.5.Wheel rutting test
                5.2.2.6.Low-temperature creep test
                5.2.2.7.Low-temperature flex test
    AHRR/SBS">        5.2.3.Microstructure study of HiMAHRR/SBS
  •     5.3.Results and discussion
            5.3.1.Technical indicators
            5.3.2.Determination of the design of mix proportion and tests of pavement performance of asphalt mixture
            5.3.3.Determination of construction technology control of HiMAHRR/SBS
                5.3.3.1.Mixture temperature control
                5.3.3.2.HiMAHRR/SBS(AC-20)mixture mixing
                5.3.3.3.HiMAHRR/SBS(AC-20)mixture transportation
                5.3.3.4.HiMAHRR/SBS(AC-20)mixture paving
                5.3.3.5.HiMAHRR/SBS(AC-20)mixture compaction
            5.3.4.Detections of the pavement
            5.3.5.Microstructure study of HiMAHRR/SBS
        5.4.Conclusion
        References
    CHAPTER6 Conclusions and Future perspectives
        6.1.Main conclusions
        6.2.Future Perspectives
    Acknowledgements
    List of publications


    【参考文献】:
    期刊论文
    [1]高粘复合改性沥青AC-20配合比设计与施工[J]. 王龙,姚卫涛,马庆伟.  山西建筑. 2016(24)



    本文编号:2944130

  • 资料下载
    论文发表

    本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2944130.html


    Copyright(c)文论论文网All Rights Reserved | 网站地图 |

    版权申明:资料由用户2ceba***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com