异构车联网通信:基于VANET-DSRC和VANET-5G自适应数据速率方法
发布时间:2020-12-30 06:15
近年来,车联网通信这一重大研究已成为智能交通系统(ITS)的重要组成部分。其中,车载自组网(VANET,Vehicular ad-hoc networks)作为新兴的无线adhoc网络,在提高交通安全性和舒适度上有着重大的意义。但是在VANET中,节点自身的移动和数量变化成为了一个具有挑战性的问题。除移动性外,如何保障信息传播的安全性和高效性也是其中的重要课题。这些问题无法解决将导致无线网络性能急剧下降。因此,近期提出的将蜂窝网络与专用短程通信技术(DSRC,Dedicated Short Range Communications)集成的异构车载网络引起了极大的关注。这种车载自组网(VANET)的蜂窝集成具有几个潜在的好处,例如,高数据传输速率,更大的通信范围和更低的延迟。除此以外,其还可以作为自动驾驶汽车的重要组成部分。但与此同时,这种网络在定义相关的方案和协议(如速率适配机制)方面仍存在若干问题。而各种VANET应用程序(如流量控制程序,管理程序和多媒体交付程序)的整体性能基于这些网络可提供的成功率和网络吞吐量。对此,IEEE 802.11p中包含了支持车载安全应用的关键技术。其中...
【文章来源】:上海交通大学上海市 211工程院校 985工程院校 教育部直属院校
【文章页数】:121 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
List of Acronyms and Abbreviations
1.CHAPTER 1:INTRODUCTION
1.1 Background and Motivation
1.2 Problem Statement and Research Objectives
1.3 Main Contributions
1.4 Thesis Organization
2.CHAPTER 2:VEHICULAR AD HOC NETWORKS OVERVIEW
2.1 Introduction
2.2 VANET Architecture and Background
2.2.1 VANET Communication System Architecture
2.2.1.1 In-Vehicle Domain
2.2.1.2 Ad-hoc Domain
2.2.1.3 Infrastructural Domain
2.2.2 VANET Components
2.2.2.1 On-Board Units(OBUs)
2.2.2.2 Application Units(AUs)
2.2.2.3 Road-Side Units(RSUs)
2.2.3 Vehicular Communication Categories
2.2.3.1 Vehicle-to-Vehicle(V2V)Communication
2.2.3.2 Vehicle-to-Infrastructure(V2I)Communication
2.2.3.3 Hybrid Architecture(V2X)
2.3 Standards for Wireless Access in VANET
2.3.1 Dedicated Short-Range Communication(DSRC)
2.3.2 IEEE1609-Standards for Wireless Access in Vehicular Environments(WAVE)
2.4 VANET Characteristics
2.5 Technical Challenges
2.6 VANET Applications and Services
2.6.1 Safety Applications
2.6.2 Traffic Monitoring and Management Applications
2.6.3 Comfort or Infotainment Applications
2.7 Summary
3.CHAPTER 3:HETEROGENEOUS VEHICULAR COMMUNICATIONS:A COMPREHENSIVE STUDY
3.1 Introduction
3.2 Heterogeneous Vehicular Communication Scenarios
3.2.1 V2V Communication
3.2.1.1 DSRC
3.2.1.2 LTE D2D
3.2.2 V2I Communication
3.2.2.1 DSRC
3.2.2.2 Cellular networks
3.3 VANET Integration with Various Heterogeneous Wireless Networks
3.3.1 Vertical Handover
3.3.2 Data Dissemination and Collection
3.3.2.1 Data dissemination
3.3.2.2 Data collection
3.3.3 Gateway Selection
3.3.4 Network Selection with Effective Quality of Service(QoS)
3.4 Beamforming,AoA and AoD for Millimeter Wave 5G and Heterogeneous Vehicular Networks)
3.4.1 Introduction
3.4.2 MmWave5G
3.4.3 Hybrid Precoding and Beamforming for mmWave5G
3.4.3.1 Definition
3.4.3.2 Hybrid digital/analog precoding/combining system model
3.4.3.3 NYUSIM Simulator
3.4.3.4 Summary
3.5 Autonomous Cars
3.5.1 Main Obstacles
3.5.2 Google Self-Driving Car
3.5.3 Open Opinion Surveys
3.6 Summary
4.CHAPTER 4:DATA RATE ADAPTATION ALGORITHMS IN WIRELESS NETWORKS
4.1 Introduction
4.2 Definition of Rate Adaptation Algorithms
4.3 Rate Adaptation Algorithms Challenges
4.4 Rate Adaptation Techniques
4.5 Rate Adaptation Mechanisms Classification
4.5.1 Classification based on channel condition information
4.5.1.1 SNR-based
4.5.1.2 SNR-based Packet statistics-based
4.5.2 Classification based on rate updating period
4.5.2.1 Frame-based
4.5.2.2 Window-based
4.5.3 Rate adaptation algorithms with and without loss differentiation
4.5.3.1 Algorithms without loss differentiation
a-Frame loss approach
b-SNR approach
4.5.3.2 Algorithms with loss differentiation
4.6 Multiband Atheros Driver for Wireless Fidelity(MadWiFi)
4.7 Multi-Retry Chain(MRR)
4.7.1 MRR Definition
4.7.2 Retry Strategies
4.8 VANET Simulation
4.9 Summary
5.CHAPTER5:TESTED ALGORITHMS IN HETEROGENEOUS VEHICULAR NETWORKS
5.1 Introduction
5.2 Adaptive Multi Rate Retry(AMRR)
5.3 Onoe Algorithm
5.4 Automatic Rate Fall back(ARF)
5.5 Adaptive Auto Rate Fallback(AARF)
5.6 Adaptive Auto Rate Fallback-Collision Detection(AARF-CD)
5.7 Minstrel Algorithm
5.8 Ideal Algorithm
5.9 Collision-Aware Rate Adaptation(CARA)
5.10 Summary
6.CHAPTER6:PERFORMANCE EVALUATION OF RATE ADAPTATION ALGORITHMS IN THE HETEROGENEOUS VEHICULAR ENVIRONMENTS
6.1 Introduction
6.2 Simulated Scenarios and Simulation Results
6.2.1 Experiment 1
6.2.2 Experiment 2
6.3 Performance Evaluation and Discussion
6.3.1 Experiment 1
6.3.1.1 Low Density Scenarios(10 and 20 vehicles)
6.3.1.2 High Density Scenarios(50 and 100 vehicles)
6.3.2 Experiment 2
6.3.2.1 Low speed scenario(10 m/s)
6.3.2.2 High speed scenario(30 m/s)
6.4 Summary
7.CHAPTER7:DZ-MINSTREL:AN EFFECTIVE RATE ADAPTATION APPROACH FOR VEHICULAR ENVIRONMENTS
7.1 Introduction
7.2 Drive Z-Minstrel(DZ-Minstrel)Rate Adaptation Algorithm
7.2.1 Retry Chain
7.2.2 Rate Selection
7.2.3 Statistics Calculation
7.3 Simulated Scenarios and Simulation Results
7.4 Performance Evaluation and Discussion
7.4.1 Low Density Scenarios(8 and25 vehicles)
7.4.1.1 Low density with low speed scenarios(40 km/h)
7.4.1.2 Low density with high speed scenarios(110 km/h)
7.4.2 High Density Scenarios(50 and100 vehicles)
7.4.2.1 High density with low speed scenarios(40 km/h)
7.4.2.2 High density with high speed scenarios(110 km/h)
7.5 Summary
8.CHAPTER8:CONCLUSION AND FUTURE WORK
ACKNOWLEDGEMENTS
PUBLISHED ACADEMIC PAPERS
REFERENCES
【参考文献】:
期刊论文
[1]Heterogeneous Vehicular Communication Architecture and Key Technologies[J]. Liu Fuqiang 1 Shan Lianhai 2 (1. School of Electronics and Information Engineering, Tongji University, Shanghai 200092, P. R. China; 2. Shanghai Research Center for Wireless Communications, Shanghai 200335, P. R. China). ZTE Communications. 2010(04)
本文编号:2947152
【文章来源】:上海交通大学上海市 211工程院校 985工程院校 教育部直属院校
【文章页数】:121 页
【学位级别】:博士
【文章目录】:
Abstract
摘要
List of Acronyms and Abbreviations
1.CHAPTER 1:INTRODUCTION
1.1 Background and Motivation
1.2 Problem Statement and Research Objectives
1.3 Main Contributions
1.4 Thesis Organization
2.CHAPTER 2:VEHICULAR AD HOC NETWORKS OVERVIEW
2.1 Introduction
2.2 VANET Architecture and Background
2.2.1 VANET Communication System Architecture
2.2.1.1 In-Vehicle Domain
2.2.1.2 Ad-hoc Domain
2.2.1.3 Infrastructural Domain
2.2.2 VANET Components
2.2.2.1 On-Board Units(OBUs)
2.2.2.2 Application Units(AUs)
2.2.2.3 Road-Side Units(RSUs)
2.2.3 Vehicular Communication Categories
2.2.3.1 Vehicle-to-Vehicle(V2V)Communication
2.2.3.2 Vehicle-to-Infrastructure(V2I)Communication
2.2.3.3 Hybrid Architecture(V2X)
2.3 Standards for Wireless Access in VANET
2.3.1 Dedicated Short-Range Communication(DSRC)
2.3.2 IEEE1609-Standards for Wireless Access in Vehicular Environments(WAVE)
2.4 VANET Characteristics
2.5 Technical Challenges
2.6 VANET Applications and Services
2.6.1 Safety Applications
2.6.2 Traffic Monitoring and Management Applications
2.6.3 Comfort or Infotainment Applications
2.7 Summary
3.CHAPTER 3:HETEROGENEOUS VEHICULAR COMMUNICATIONS:A COMPREHENSIVE STUDY
3.1 Introduction
3.2 Heterogeneous Vehicular Communication Scenarios
3.2.1 V2V Communication
3.2.1.1 DSRC
3.2.1.2 LTE D2D
3.2.2 V2I Communication
3.2.2.1 DSRC
3.2.2.2 Cellular networks
3.3 VANET Integration with Various Heterogeneous Wireless Networks
3.3.1 Vertical Handover
3.3.2 Data Dissemination and Collection
3.3.2.1 Data dissemination
3.3.2.2 Data collection
3.3.3 Gateway Selection
3.3.4 Network Selection with Effective Quality of Service(QoS)
3.4 Beamforming,AoA and AoD for Millimeter Wave 5G and Heterogeneous Vehicular Networks)
3.4.1 Introduction
3.4.2 MmWave5G
3.4.3 Hybrid Precoding and Beamforming for mmWave5G
3.4.3.1 Definition
3.4.3.2 Hybrid digital/analog precoding/combining system model
3.4.3.3 NYUSIM Simulator
3.4.3.4 Summary
3.5 Autonomous Cars
3.5.1 Main Obstacles
3.5.2 Google Self-Driving Car
3.5.3 Open Opinion Surveys
3.6 Summary
4.CHAPTER 4:DATA RATE ADAPTATION ALGORITHMS IN WIRELESS NETWORKS
4.1 Introduction
4.2 Definition of Rate Adaptation Algorithms
4.3 Rate Adaptation Algorithms Challenges
4.4 Rate Adaptation Techniques
4.5 Rate Adaptation Mechanisms Classification
4.5.1 Classification based on channel condition information
4.5.1.1 SNR-based
4.5.1.2 SNR-based Packet statistics-based
4.5.2 Classification based on rate updating period
4.5.2.1 Frame-based
4.5.2.2 Window-based
4.5.3 Rate adaptation algorithms with and without loss differentiation
4.5.3.1 Algorithms without loss differentiation
a-Frame loss approach
b-SNR approach
4.5.3.2 Algorithms with loss differentiation
4.6 Multiband Atheros Driver for Wireless Fidelity(MadWiFi)
4.7 Multi-Retry Chain(MRR)
4.7.1 MRR Definition
4.7.2 Retry Strategies
4.8 VANET Simulation
4.9 Summary
5.CHAPTER5:TESTED ALGORITHMS IN HETEROGENEOUS VEHICULAR NETWORKS
5.1 Introduction
5.2 Adaptive Multi Rate Retry(AMRR)
5.3 Onoe Algorithm
5.4 Automatic Rate Fall back(ARF)
5.5 Adaptive Auto Rate Fallback(AARF)
5.6 Adaptive Auto Rate Fallback-Collision Detection(AARF-CD)
5.7 Minstrel Algorithm
5.8 Ideal Algorithm
5.9 Collision-Aware Rate Adaptation(CARA)
5.10 Summary
6.CHAPTER6:PERFORMANCE EVALUATION OF RATE ADAPTATION ALGORITHMS IN THE HETEROGENEOUS VEHICULAR ENVIRONMENTS
6.1 Introduction
6.2 Simulated Scenarios and Simulation Results
6.2.1 Experiment 1
6.2.2 Experiment 2
6.3 Performance Evaluation and Discussion
6.3.1 Experiment 1
6.3.1.1 Low Density Scenarios(10 and 20 vehicles)
6.3.1.2 High Density Scenarios(50 and 100 vehicles)
6.3.2 Experiment 2
6.3.2.1 Low speed scenario(10 m/s)
6.3.2.2 High speed scenario(30 m/s)
6.4 Summary
7.CHAPTER7:DZ-MINSTREL:AN EFFECTIVE RATE ADAPTATION APPROACH FOR VEHICULAR ENVIRONMENTS
7.1 Introduction
7.2 Drive Z-Minstrel(DZ-Minstrel)Rate Adaptation Algorithm
7.2.1 Retry Chain
7.2.2 Rate Selection
7.2.3 Statistics Calculation
7.3 Simulated Scenarios and Simulation Results
7.4 Performance Evaluation and Discussion
7.4.1 Low Density Scenarios(8 and25 vehicles)
7.4.1.1 Low density with low speed scenarios(40 km/h)
7.4.1.2 Low density with high speed scenarios(110 km/h)
7.4.2 High Density Scenarios(50 and100 vehicles)
7.4.2.1 High density with low speed scenarios(40 km/h)
7.4.2.2 High density with high speed scenarios(110 km/h)
7.5 Summary
8.CHAPTER8:CONCLUSION AND FUTURE WORK
ACKNOWLEDGEMENTS
PUBLISHED ACADEMIC PAPERS
REFERENCES
【参考文献】:
期刊论文
[1]Heterogeneous Vehicular Communication Architecture and Key Technologies[J]. Liu Fuqiang 1 Shan Lianhai 2 (1. School of Electronics and Information Engineering, Tongji University, Shanghai 200092, P. R. China; 2. Shanghai Research Center for Wireless Communications, Shanghai 200335, P. R. China). ZTE Communications. 2010(04)
本文编号:2947152
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/2947152.html