城市公交到站时间实时预测研究
发布时间:2023-02-26 01:14
近年来,基于公交导向的城市交通蓬勃发展,智能公交系统受到了我国人民越来越多的关注,同时大城市的公交实时预测研究也变得炙手可热。通过实时准确的公交到站时间预测技术,有助于促进APTS的智能信息化发展,提高城市的管理水平和服务能力,同时也能让公交系统的运行效率大大提升。因此,本文以广州的公交线路作为研究对象,通过对公交运行特性及预测方法的分析,确定了基于统计的预测方法在公交到站实时预测的可行性,并以公交运行时间曲线作为研究对象,针对城市的公交到站时间实时预测展开工作,通过处理分析公交运行的历史时间数据,进而构建运行时间曲线,从基于统计的规律中出发,提出了基于聚类分析的曲线匹配预测模型、基于曲线匹配的预测模型、基于日期特征的预测模型,根据研究的内容主要划分为以下三个方面:首先,以广州2017年近110天的数据为基础,对原始数据进行预处理和标准化分析,将历史数据转化成视觉化的运行时间曲线。再对曲线进行中值滤波处理,通过对运行时间曲线的特征进行差异研究,针对曲线特征参数譬如:斜率、纵坐标数值、曲率等逐个计算、分析、筛选,提出了基于曲线匹配的研究思路。然后,为了研究基于曲线匹配的公交到站预测的效率...
【文章页数】:81 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第一章 绪论
1.1 选题背景
1.1.1 大城市公交发展趋势
1.1.2 智能公交系统快速发展
1.1.3 公交到站时间预测应用现状
1.1.4 研究方案及问题分析
1.2 本课题研究目的
1.3 研究现状
1.3.1 国外研究现状概述
1.3.2 国内研究现状概述
1.4 本文的研究内容与思路
1.4.1 研究内容
1.4.2 研究思路
第二章 公交到站时间预测的相关模型
2.1 公交车运行特性介绍
2.2 公交到站时间预测模型介绍
2.2.1 基于统计的预测模型
2.2.2 基于分析的预测模型
2.2.3 预测模型比较分析
2.3 曲线匹配模型的相关性
2.4 本章小结
第三章 曲线匹配预测的可行性分析
3.1 曲线匹配思路的提出
3.1.1 公交到站时间原始数据
3.1.2 运行时间的数据分析
3.1.3 运行时间曲线的分析
3.2 曲线匹配的可行性分析
3.3 曲线匹配的特征参数分析
3.3.1 特征参数概述
3.3.2 各类特征参数的概念及计算
3.3.3 特征参数的分析比较
3.4 本章小结
第四章 基于曲线匹配的预测模型构建
4.1 原始数据的处理
4.1.1 原始数据的获取
4.1.2 原始数据的基础信息完善
4.1.3 预处理数据的标准化
4.2 运行时间曲线的处理
4.2.1 曲线的中值滤波平滑
4.2.2 曲线的聚类分析优化
4.3 模型特征参数的确定
4.4 曲线匹配预测模型的建立
4.4.1 曲线匹配预测的思路
4.4.2 曲线匹配长度的标准化
4.4.3 基于聚类分析的曲线匹配
4.4.4 模型误差评价指标
4.5 本章小结
第五章 预测模型的实证检验
5.1 基于日期特征的预测模型
5.2 基于曲线匹配的预测模型
5.3 基于聚类分析的曲线预测模型
5.4 模型的效果对比及评价
5.4.1 模型精度分析
5.4.2 模型复杂度分析
5.5 本章小结
第六章 总结与展望
6.1 研究结论
6.2 研究展望
参考文献
致谢
本文编号:3749523
【文章页数】:81 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
第一章 绪论
1.1 选题背景
1.1.1 大城市公交发展趋势
1.1.2 智能公交系统快速发展
1.1.3 公交到站时间预测应用现状
1.1.4 研究方案及问题分析
1.2 本课题研究目的
1.3 研究现状
1.3.1 国外研究现状概述
1.3.2 国内研究现状概述
1.4 本文的研究内容与思路
1.4.1 研究内容
1.4.2 研究思路
第二章 公交到站时间预测的相关模型
2.1 公交车运行特性介绍
2.2 公交到站时间预测模型介绍
2.2.1 基于统计的预测模型
2.2.2 基于分析的预测模型
2.2.3 预测模型比较分析
2.3 曲线匹配模型的相关性
2.4 本章小结
第三章 曲线匹配预测的可行性分析
3.1 曲线匹配思路的提出
3.1.1 公交到站时间原始数据
3.1.2 运行时间的数据分析
3.1.3 运行时间曲线的分析
3.2 曲线匹配的可行性分析
3.3 曲线匹配的特征参数分析
3.3.1 特征参数概述
3.3.2 各类特征参数的概念及计算
3.3.3 特征参数的分析比较
3.4 本章小结
第四章 基于曲线匹配的预测模型构建
4.1 原始数据的处理
4.1.1 原始数据的获取
4.1.2 原始数据的基础信息完善
4.1.3 预处理数据的标准化
4.2 运行时间曲线的处理
4.2.1 曲线的中值滤波平滑
4.2.2 曲线的聚类分析优化
4.3 模型特征参数的确定
4.4 曲线匹配预测模型的建立
4.4.1 曲线匹配预测的思路
4.4.2 曲线匹配长度的标准化
4.4.3 基于聚类分析的曲线匹配
4.4.4 模型误差评价指标
4.5 本章小结
第五章 预测模型的实证检验
5.1 基于日期特征的预测模型
5.2 基于曲线匹配的预测模型
5.3 基于聚类分析的曲线预测模型
5.4 模型的效果对比及评价
5.4.1 模型精度分析
5.4.2 模型复杂度分析
5.5 本章小结
第六章 总结与展望
6.1 研究结论
6.2 研究展望
参考文献
致谢
本文编号:3749523
本文链接:https://www.wllwen.com/kejilunwen/daoluqiaoliang/3749523.html