微小容量压缩空气储能最大效率点跟踪研究
发布时间:2018-04-17 11:01
本文选题:压缩空气储能 + 控制策略 ; 参考:《北京交通大学》2015年硕士论文
【摘要】:压缩空气储能系统是一种日趋成熟的储能方式,其以环境友好、使用寿命长、投资成本低等优势,开始得到人们的普遍关注。目前,国外已有数座压缩空气储能电站建立,均为大容量储能。然而,大容量储能系统受到地理条件的影响,极大的限制了其发展。小型甚至微小型压缩空气储能系统的研发大多处于理论层面,还未投入商业运行。微小型压缩空气储能系统与传统压缩空气储能电站相比,无需燃烧化石燃料,真正实现零排放,且改用储气装置来存储压缩气体,对地理条件没有要求,使用灵活方便,因而可用作备用电源、微型智能电网和独立偏远供电网等。可见,研究微小型压缩空气储能系统具有重要的现实意义。 本文主要研究一种新型压缩空气储能方式——微小型全桥式液气循环压缩空气储能,该技术压缩效率高,响应迅速。关键技术是液泵、液力马达的控制,对液泵、液力马达的控制策略将极大的影响系统的压缩过程,系统的整体效率等。因此本文在对储能系统工作特性进行详细分析的基础上,重点研究了储能系统的控制策略。首先,对国内外的储能技术及其控制算法做了简单的介绍。其次,研究了微小容量压缩空气储能系统的工作特性。对于本课题中研究的微小容量全桥式压缩空气储能系统进行了详细介绍,并对系统中机电转换环节即液泵和电机的特性进行了研究。再次,对储能系统的控制策略进行研究。重点研究了最大效率点跟踪控制、最大功率点跟踪控制和结合最大功率点和最大效率点跟踪控制的优化的最大效率点跟踪控制算法,即混合控制算法。对比不同控制算法对系统工作特性的影响,主要对功率和效率参数进行了分析。最后,基于Matlab/Simulink利用宏观能流表示法搭建液气循环压缩空气储能系统模型,对系统分别在上述三种控制策略下的工作状态进行了仿真,验证了理论分析的正确性。并在实验室条件下设计搭建了实验平台进行实验验证。
[Abstract]:Compressed air energy storage system is a more and more mature energy storage method. It has been paid more and more attention due to its advantages of friendly environment, long service life and low investment cost.At present, a number of compressed air energy storage power stations have been established abroad, all of which are large capacity energy storage.However, the development of large capacity energy storage system is greatly restricted by geographical conditions.The R & D of small and even micro compressed air energy storage system is mostly in the theoretical level and has not yet been put into commercial operation.Compared with traditional compressed air energy storage power station, micro compressed air energy storage system can realize zero emission without burning fossil fuel, and use gas storage device to store compressed gas, which has no requirement for geographical conditions and is flexible and convenient to use.Therefore, it can be used as backup power source, micro smart grid and independent remote power supply network.Therefore, it is of great practical significance to study the micro compressed air energy storage system.In this paper, a new type of compressed air energy storage method, micro-bridge type liquid-gas circulating compressed air energy storage, is studied. The technology has high compression efficiency and rapid response.The key technology is the control of hydraulic pump and hydraulic motor. The control strategy of hydraulic pump and hydraulic motor will greatly affect the compression process of the system and the overall efficiency of the system.Therefore, based on the detailed analysis of the working characteristics of the energy storage system, the control strategy of the energy storage system is studied in this paper.Firstly, the energy storage technology and its control algorithm at home and abroad are briefly introduced.Secondly, the working characteristics of the micro-capacity compressed air energy storage system are studied.The micro-capacity full-bridge compressed air energy storage system studied in this paper is introduced in detail, and the characteristics of the electromechanical conversion link, that is, hydraulic pump and motor, are also studied.Thirdly, the control strategy of energy storage system is studied.The maximum efficiency point tracking control, the maximum power point tracking control and the optimal maximum efficiency point tracking control algorithm combining the maximum power point tracking control with the maximum efficiency point tracking control, that is, the hybrid control algorithm, are studied in this paper.The power and efficiency parameters are analyzed by comparing the effects of different control algorithms on the operating characteristics of the system.Finally, based on Matlab/Simulink, the model of liquid-gas circulating compressed air energy storage system is built by using macroscopic energy flow representation, and the simulation of the system working state under the three control strategies is carried out, which verifies the correctness of the theoretical analysis.The experimental platform is designed and built under the laboratory conditions for experimental verification.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TK02
【参考文献】
相关期刊论文 前10条
1 李霄;胡长生;刘昌金;徐德鸿;;基于超级电容储能的风电场功率调节系统建模与控制[J];电力系统自动化;2009年09期
2 张新敬;陈海生;刘金超;李文;谭春青;;压缩空气储能技术研究进展[J];储能科学与技术;2012年01期
3 陈海生;刘金超;郭欢;徐玉杰;谭春青;;压缩空气储能技术原理[J];储能科学与技术;2013年02期
4 王成山;武震;杨献莘;张书槐;刘一欣;;基于微型压缩空气储能的混合储能系统建模与实验验证[J];电力系统自动化;2014年23期
5 朱卫光;张承宁;董玉刚;;大功率永磁同步电机转子永磁体损耗研究[J];电机与控制学报;2014年01期
6 陈奕;张步涵;毛承雄;毛彪;曾杰;陈迅;;利用混合储能系统改善配电网电能质量的研究[J];湖北工业大学学报;2012年01期
7 付永领;李祝锋;安高成;张猛;齐海涛;薛晶;;电液泵发展现状与关键技术综述[J];机床与液压;2012年01期
8 戴新;刘先航;樊泽国;李秀芬;;大规模压缩空气储能技术特点与能耗特性[J];内蒙古电力技术;2013年03期
9 曼综;;《风力发电科技发展“十二五”专项规划》发布[J];军民两用技术与产品;2012年05期
10 李连生;杨启超;赵远扬;;微小型压缩空气储能系统研究[J];流体机械;2014年03期
,本文编号:1763334
本文链接:https://www.wllwen.com/kejilunwen/dongligc/1763334.html