潜标平台运动及数据反演研究
本文选题:潜标 + 平台运动 ; 参考:《中国海洋大学》2015年博士论文
【摘要】:在南海这样的深水区,船载调查等常规海洋观测方法难以得到大量连续的数据,而定点潜标观测则解决了这一问题。多个定点潜标可以组成空间阵列,沿着每个潜标的缆线又可以挂载多种海洋仪器,这两种措施大大扩展了潜标观测的水平和垂向范围,使得潜标在海洋观测中得到越来越广泛的应用。随着观测和数据的迅速增加,以及应用范围的扩展,潜标数据质量的好坏也越来越重要;同时,潜标运动、数据缺测等问题对潜标数据质量的影响也变得更加突出和严重。因而及时进行有效的数据质量分析和误差控制,将相关影响减到最低也就变得越来越必要。本文基于大量的南海潜标观测实例,通过方法的创新和多种数据的充分使用,对潜标运动和数据缺测这两类影响潜标数据质量的问题进行了研究。锚定潜标有一个显著的特点就是它是一个运动的平台,除了固定的底部之外,潜标各部分都随着海水的流动而运动。在垂直方向,通过压力记录,我们可以清楚看到潜标的运动情况;在水平方向,虽然运动更加剧烈,但是由于相关研究的缺乏,我们还得不到准确的运动距离和速度。为此,在充分利用潜标上的测流仪器的姿态数据的基础上,本文提出了一种能够量化潜标三维运动的简单易行的新方法,即在将潜标分段之后,由仪器姿态确定每段线缆的倾斜方向,由压力及潜标布放参数确定其倾斜角度,自下而上积分,从而实现潜标各部分的空间定位。空间位置的时间导数即是潜标的运动速度,原始流速加上该速度即是真实的海水流速。本文通过对海峡流、潮流、孤立波影响下的典型的潜标案例的分析来研究潜标运动的大小和影响。对于长度为745米、3700米和2000米,偏降为270米、150米和20米的三个潜标,其最大运动速度分别达到6 cm s-1、7 cm s-1和15 cms-1。对于上层的强流来说,潜标速度占比大约为10%,然而随着深度的增加和流速的减弱,这一比例能达到20-60%。可见,对于剧烈运动的潜标来说,流速订正很有必要。对于潮流等变化较缓慢的流场来说,剧烈运动的标志就是大偏降:而对于孤立波等来说,即使是几十米的小偏降也应引起注意。本文研究揭示出潜标的运动规律:潜标在海流的带动下运动,具有和流速结构类似的频谱关系;某一频率的潮流引起的潜标运动轨迹是椭圆,流速和潜标速度基本垂直,且潜标运动在位相上领先90度,同样大小的潮流所引起的潜标运动速度与其周期成反比;斜压流场和潜标结构不均等会打破理想关系,但实际潜标运动一般被上层强流所主导。海洋是个复杂多变的环境场,多种仪器组合成的潜标系统长期在其中工作,也就难免产生各种状况,导致部分数据异常或缺失。因而,充分利用潜标系统中的已有数据,实现缺测数据的反演,也就十分难得和有用。上打ADCP的深度即可通过声学回波信号反演得到。前人的相关研究都没有考虑干扰,但在实际观测中,各beam的声学回波信号之间会有干扰,同时共振、电路等可能原因导致的奇异值也会污染声信号。本文通过分析总结这些干扰的特点和规律,先消除这些影响之后再进行拟合,得到更加准确实用的反演深度。在深度缺测的情况下它是可靠的替代,在观测深度有效的情况下它们可以相互印证并进一步排除奇异值,因而深度反演大大增加了深度这一基础数据的冗余度和安全性。使用温度链实现海洋上层温度的观测是潜标的一项重要应用,但是受到强流导致的潜标运动的影响,经常出现顶部温度的缺测。如何较准确地实现缺测温度的补偿和反演,是一个有挑战的新问题,本文就此进行了研究。理论上可以通过以下方法进行温度反演:通过ADCP回波得出的反演深度和观测深度对比,再结合ADCP实测声速就能得到ADCP到海表的实际平均声速,从该声速中去掉温度链观测即可得到顶层缺测部分的平均温度值,该值作为控制条件,以SST和温度链顶端观测为温度的上、下边界条件,再结合缺测时段前后的温跃层结构,即可实现缺测部分的温度反演。
[Abstract]:In the deep water areas such as the South China Sea, it is difficult to get a large number of continuous data in the conventional ocean observation methods, such as shipboard investigation, and the fixed point submersible observation can solve this problem. The multiple fixed-point submersible marks can form a space array, and a variety of marine instruments can be mounted along the cable of each submersible. These two measures greatly extend the water of the submersible observation. The horizontal and vertical range make the submersible standard more and more widely used in ocean observation. With the rapid increase of the observation and data and the expansion of the application range, the quality of the submersible data is becoming more and more important. At the same time, the influence of the submersible motion and the data lack on the quality of the submersible data has become more and more prominent and serious. It is becoming more and more necessary to carry out effective data quality analysis and error control in time and reduce the relative influence to the lowest. Based on a large number of examples of South China Sea submersible observation, this paper studies the two kinds of problems affecting the quality of the submersible data through the innovation of the method and the full use of many kinds of data. There is a remarkable feature of anchoring potential that it is a motion platform. Apart from the fixed bottom, the submersible parts are moving along with the flow of the sea water. In the vertical direction, we can clearly see the motion of the submersible by the pressure record; in the horizontal direction, although the movement is more intense, but the related research is due. On the basis of taking full advantage of the attitude data of the current measuring instrument, a simple and easy method to quantify the three-dimensional motion of the submersible standard is proposed. The submersible standard distribution parameters determine its tilt angle and integrate from bottom to top to realize the spatial positioning of all parts of the submersible mark. The time derivative of the space position is the velocity of the submersible mark, and the original flow velocity plus the velocity is the real sea water velocity. The size and influence of the submersible motion are studied. For three submersible marks of 745 meters, 3700 meters and 2000 meters, 270 meters, 150 meters and 20 meters, the maximum velocity of the submersible is 6 cm s-1,7 cm S-1 and 15 cms-1., respectively, for the upper flow, the ratio of the submersible velocity is about 10%, however, with the increase of depth and the weakening of the velocity, this ratio is a ratio. As for the 20-60%. visible, the velocity correction is necessary for the submersible motion of the violent motion. For the flow field, such as the slow flow of the flow, the sign of the violent motion is the large partial drop: for the solitary wave, even the small partial drop of several tens of meters should be paid attention. This paper reveals the motion law of the submersible mark: the submersible mark. The motion of a current driven by a current is similar to the flow velocity structure; the trajectory of the submersible motion caused by a certain frequency is an ellipse, the velocity and the velocity of the submersible mark are basically vertical, and the submersible motion is 90 degrees ahead of the phase in the position phase, and the velocity of the submersible motion caused by the same size is inversely proportional to the cycle. The unequal structure of the standard will break the ideal relationship, but the actual submersible motion is generally dominated by the upper current. The ocean is a complex and changeable environment. The submersible system formed by a variety of instruments has been working in it for a long time, and it is unavoidable to produce a variety of conditions and cause some abnormal or missing data. Therefore, the number of existing numbers in the submersible system is fully utilized. It is very rare and useful to realize the inversion of the missing data. The depth of the ADCP can be retrieved by the acoustic echo signal. The previous related studies have not taken into account the interference, but in the actual observation, there will be interference between the acoustic echo signals of each beam, and the singular values caused by the possible causes such as the circuit will also be polluted. In this paper, the characteristics and laws of these disturbances are analyzed and summed up, and then the effects of these effects are eliminated before fitting in order to get more accurate and practical inversion depth. In the case of depth lack, it is a reliable substitute. In the case of the depth of observation, they can confirm each other and further eliminate the singular values, thus the depth is inverse. It greatly increases the redundancy and security of this basic data. Using the temperature chain to realize the observation of the upper ocean temperature is an important application of the submersible standard. However, the top temperature is often absent from the influence of the submersible motion caused by the strong current. How to accurately realize the compensation and inversion of the measured temperature is a choice. The new problem of war is studied in this paper. In theory, the temperature inversion can be carried out by the following methods: the contrast between the inversion depth and the observation depth obtained through the ADCP echo, and then the actual average sound speed of the ADCP to the sea surface can be obtained by combining the measured sound velocity of the ADCP, and the top layer can be obtained by removing the temperature chain from the sound velocity. The mean temperature value is used as the control condition. The temperature inversion of the missing part can be achieved by observing the top of the SST and the top of the temperature chain as the temperature, the lower boundary condition and the thermocline structure before and after the absence of the measured time.
【学位授予单位】:中国海洋大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P715.2
【相似文献】
相关期刊论文 前10条
1 ;中国首次在南极成功投放并回收潜标系统[J];泸州科技;2010年01期
2 侯广利;张颖;孙继昌;张颖颖;王亚洲;;一种潜标的水下姿态变化规律分析[J];海洋技术;2010年03期
3 杨坤汉;;试论潜标系统在我国海洋事业中的地位和作用[J];海洋技术;1989年01期
4 毛祖松;海洋潜标技术的应用与发展[J];海洋测绘;2001年04期
5 刘愉强;盛岩峰;王俊勤;何红辉;;潜标系统静态力学分析计算及其应用程序开发[J];海洋技术;2010年03期
6 刘慧;杨书凯;刘敏;韩桂海;初士博;牛军;;三维图形技术在潜标姿态回放系统中的应用[J];信息技术与信息化;2011年04期
7 宋铭航;;单点锚定绷紧型千米潜标系统的设计和计算[J];海洋技术;1989年01期
8 杨坤汉;王明午;;绷紧型单点锚定潜标系统布放回收操作方法[J];海洋技术;1989年01期
9 葛德宏;朱海;陈建华;蔡鹏;;深海潜标系统运动仿真研究[J];大连海事大学学报;2014年01期
10 邹吉武;孙大军;吕云飞;;海洋矢量声场观测浮标与潜标系统[J];声学技术;2010年02期
相关会议论文 前7条
1 刘愉强;盛岩峰;姜峰;黄庆雄;;潜标系统静态力学分析计算及其应用程序开发[A];第二十一届海洋测绘综合性学术研讨会论文集[C];2009年
2 王婷;;国外海洋潜标系统的发展[A];中国声学学会水声学分会2011年全国水声学学术会议论文集[C];2011年
3 刘愉强;盛岩峰;姜峰;黄庆雄;;潜标系统静态力学分析计算及其应用程序开发[A];中国测绘学会第九次全国会员代表大会暨学会成立50周年纪念大会论文集[C];2009年
4 卫阑,
本文编号:1785130
本文链接:https://www.wllwen.com/kejilunwen/haiyang/1785130.html