当前位置:主页 > 科技论文 > 航空航天论文 >

悬吊式宇航员低重力模拟系统动力学建模及控制分析

发布时间:2017-12-26 16:26

  本文关键词:悬吊式宇航员低重力模拟系统动力学建模及控制分析 出处:《哈尔滨工业大学》2015年硕士论文 论文类型:学位论文


  更多相关文章: 宇航员训练 低重力模拟 悬吊法 单吊索重力补偿模型 随动控制


【摘要】:宇航员的地面训练是载人航天任务实施的重要准备。以阿波罗探月任务为标志,任务中要求宇航员在特殊的太空环境下:移动轨迹愈加精确;活动范围愈加宽广;操作技巧愈加高超。在此背景下,在地面模拟太空的低重力环境,训练宇航员舱外活动技能愈发重要。中、美、俄和欧盟等航天强国在地面低重力模拟方面的进行了大量研究,其中对于宇航员舱外活动的低重力模拟主要依靠水浮和失重飞行等被动方法,宇航员训练时间和运动速度受到限制,不足以满足未来任务的需求。随着电机、传感器及控制技术的进步,在宇航员舱外活动训练中运用悬吊法主动的跟踪宇航员运动,提供高精度重力补偿的系统实现成为可能。首先,本文对宇航员多刚体链式模型建立了重力补偿模型,得到了完整的补偿力约束条件。在补偿力约束条件下,限定补偿力数目、作用点和方向,得到了一组单吊索重力补偿模型的解。对应的提出宇航员运动中单吊索重力补偿的实现原理。分析宇航员训练中的运动状态,完成悬吊式宇航员低重力模拟系统方案设计,确定单吊索重力补偿可以高保真实现宇航员行走,奔跑以及空间机动的低重力模拟训练。其次,根据宇航员运动的两种状态,分别建立了对应的宇航员-随动悬吊系统的动力学模型。面向随动控制方法研究,统一了随动系统的动力学模型和控制目标。并通过数字仿真对建立的模型完成了动力学特性分析和验证,发现宇航员-随动悬吊系统存在未知扰动、耦合和非线性的动力学特性。最后,依据建立的的动力学模型,运用部分反馈线性化方法设计了稳定的非线性随动控制器。在ADAMS中搭建设计的模拟系统,在MATLAB中建立随动控制器,联合两者得到仿真实验平台,进行宇航员运动中的躯干质心跟踪实验,分析控制器的性能,证明了系统设计的正确性。
[Abstract]:The astronauts' ground training is an important preparation for the implementation of the manned space mission. Marked by Apollo's mission to the moon, astronauts are required to have more precise mobile trajectories, wider range of activities and more excellent operation skills in special space environment. In this context, the training of astronauts' skills in extravehicular activity is becoming more and more important in the ground simulation of the low gravity environment in space. In the United States, Russia and the European Union and other space powers in low gravity ground simulation is studied, including low gravity for extravehicular activity mainly depends on the water and simulated weightlessness flight passive method, astronaut training time and movement speed is limited, inadequate to meet future tasks. With the progress of motor, sensor and control technology, it is possible to carry out the active tracking of astronaut motion in the astronaut extravehicular activity training and provide the high-precision gravity compensation system. First, the gravity compensation model is established for the multi rigid body chain model of astronauts, and a complete compensation constraint condition is obtained. Under the constraint of compensation force, the solution of a set of gravity compensation model for single sling is obtained by limiting the number of compensation force, the point of action and the direction. The corresponding principle of the realization of the gravity compensation of single sling in the astronaut movement is proposed. The motion state of astronaut training is analyzed, and the design of suspended astronaut low gravity simulation system is completed. The gravity compensation of single sling can ensure high fidelity to achieve astronaut walking, running and low gravity simulation training of space maneuver. Secondly, according to the two states of the astronaut movement, the corresponding dynamic model of the astronaut - servo suspension system is set up respectively. For the study of the servo control method, the dynamic model and the control target of the servo system are unified. The dynamic characteristics of the model are analyzed and verified by digital simulation. It is found that there are unknown disturbances, coupling and nonlinear dynamic characteristics of the astronaut servo suspension system. Finally, based on the established dynamic model, a stable nonlinear servo controller is designed by using the partial feedback linearization method. A simulation system is built in ADAMS, and a servo controller is set up in MATLAB. A simulation experiment platform is combined to carry out the tracking experiment of the trunk mass in the astronaut motion, and the performance of the controller is analyzed, which proves the correctness of the system design.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V416.8;V527

【参考文献】

相关硕士学位论文 前1条

1 孙小雷;月球车地面六分之一重力试验系统的位姿确定方法研究[D];哈尔滨工业大学;2010年



本文编号:1337989

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1337989.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5a328***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com