当前位置:主页 > 科技论文 > 航空航天论文 >

面向多跑道的进离场航班优化调度研究

发布时间:2017-12-27 23:17

  本文关键词:面向多跑道的进离场航班优化调度研究 出处:《南京航空航天大学》2016年硕士论文 论文类型:学位论文


  更多相关文章: 多跑道 进离场航班排序 航班延误损失 跑道吞吐量 管制员工作负荷 航班调度公平性 GAAA算法


【摘要】:经济的快速发展带来民航业的繁荣景象,航班量增加,民航运输需求急剧扩大。民用航空运输事业在向前迈进的同时也遭遇了艰难的处境。对多跑道进离场航班的优化调度问题研究,从航空公司角度,通过降低航班的延误损失成本,提高公司的经济效益;从机场角度,能够增大跑道吞吐量,改进场面资源使用效率;从空管部门角度,降低管制员工作负荷,疏导空中交通,提高航班调度的公平性,进而为航班延误问题的解决提供一定的参考。本文在参考大量中外文文献的基础上,同时结合我国民航运输现状,分别从航空公司、机场、空管部门三个角度出发,通过降低航班延误,改善航空公司经济效益,增大跑道吞吐量,降低管制员工作量,以提高调度航班公平性为目的,研究拥有多条跑道的大型机场航班优化调度策略。首先针对单跑道机场,建立进离场航班优化调度模型,将航空公司延误损失及管制员工作负荷作为优化目标,选用遗传与滑动时间窗叠加的优化算法对模型进行求解。其次,针对繁忙机场多条跑道的情况,以最小化延误损失,最大化跑道资源利用率和航班调度最公平为目标,建立面向多条跑道的大型机场的航班调度研究排序模型,选取遗传与蚁群相融合的遗传-蚁群算法(Genetic Algorithm and Ant Algorithm,GAAA)进行实验测试。这是因为GAAA算法既具有遗传算法高速敏捷的特性及较强的整体搜索能力,同时又具有蚁群算法并行运算及运行高效等优点。通过仿真实验,结果表明:本文所建立的航班调度研究模型及算法能够很好地降低航班延误损失,增加跑道吞吐量,提高航班调度的公平性,对缓解航班拥堵、减少航班大面积延误提供决策与方法支撑。
[Abstract]:The rapid development of the economy has brought about the prosperity of the civil aviation industry, the increase of the flight volume and the rapid expansion of the demand for civil aviation. Civil aviation transportation has been in a difficult situation while moving forward. Study on the optimal scheduling problem of multi runway departure flights, airlines from the angle of the flight delay loss to reduce the cost, increase the economic benefit of the company; from the airport, can increase runway throughput, improved efficiency in the use of resources from the perspective of the scene; air traffic control departments, reduce the workload, ease air traffic, improve the fairness of flight scheduling, and provide a reference for solving the problem of flight delay. Based on a large number of foreign literature, combined with the current situation of civil aviation transportation in our country, respectively from three angles of airlines, airports, air traffic control departments of the airlines to reduce flight delays, improve economic efficiency, increase runway throughput, reduce the workload of controllers, in order to improve the fairness of the scheduling of flight for the purpose of large airport flight study on optimal scheduling strategy with multiple runways. First, a scheduling model of departure flights is established for single runway airports. Taking the airline's delay loss and controller workload as an optimization objective, we choose the optimization algorithm based on genetic algorithm and sliding time window to solve the model. Secondly, in the busy airport runway, to minimize the loss of delay, maximize the resource utilization rate and the runway flight scheduling is the most fair as the goal, set up a large airport on flights of scheduling model for multi runway, genetic ant colony algorithm adopts genetic and ant colony fusion (Genetic Algorithm and Ant Algorithm. GAAA) test. This is because the GAAA algorithm has the characteristics of high speed and agility of genetic algorithm and strong overall search ability. It also has the advantages of parallel operation and efficient operation of ant colony algorithm. Through simulation experiments, results show that the flight scheduling model and algorithm proposed in this paper can effectively reduce the loss of flight delays, increase runway throughput, improve the fairness of the flight scheduling, to alleviate congestion, provide law support flight delay decision and reduce a large area of flight.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:V355.2

【参考文献】

相关期刊论文 前10条

1 蒋欣欣;周航;;基于CDM系统的航班动态性调度研究[J];武汉理工大学学报(交通科学与工程版);2015年05期

2 徐肖豪;于跃;黄宝军;郭晓明;;基于ISWO的机场进离场航班优化排序研究[J];计算机仿真;2014年07期

3 袁野;杨红雨;羽翼;王世豪;;人工鱼群——粒子群混合算法优化进港航班排序[J];计算机应用研究;2014年03期

4 马昕;李夏;;梯度法优化下的机场跑道容量结构分析[J];交通科技与经济;2013年04期

5 张启钱;胡明华;施赛锋;杨晶妹;;多跑道航班起降调度优化算法[J];交通运输工程学报;2012年06期

6 王世东;张越;张智海;鱼海洋;;繁忙机场航班降落排序的多目标优化[J];交通运输系统工程与信息;2012年04期

7 冯兴杰;孟欣;;基于免疫粒子群优化算法的航班着陆调度研究[J];计算机工程;2012年13期

8 刘期建;何元清;;基于多目标分阶段的跑道调度计划算法[J];计算机应用研究;2012年04期

9 张家静;张建伟;;基于动态优化的进出港航班排序模型[J];四川大学学报(自然科学版);2012年01期

10 黄政;白存儒;张伟;;到达航班排序与调度优化的遗传算法研究[J];航空工程进展;2011年02期



本文编号:1343605

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1343605.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0ebf7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com