四旋翼飞行器运动控制系统的设计与实现
本文关键词:四旋翼飞行器运动控制系统的设计与实现 出处:《湖南大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 四旋翼飞行器 控制系统 动力学模型 Kinetis 串级PID控制
【摘要】:四旋翼飞行器具有四个对称分布的螺旋桨,是一种结构简单、控制灵活、能够垂直起降的无人飞行器,具有广阔的军事和民用前景。四旋翼飞行器也是一个多学科融合的综合体,为机器人领域提供了良好的实现平台,在机器人智能控制、惯性导航、路径规划、三维场景重构和多机协同等领域具有较高科研价值。本文针对四旋翼飞行器的运动控制系统开展了研究工作,首先介绍了四旋翼飞行器的发展情况,阐述了四旋翼飞行器的研究背景和意义,分析了国内外对于四旋翼飞行器的研究现状与发展趋势。针对四旋翼飞行器的结构特点,分析了四旋翼飞行器的飞行原理,描述了飞行器的基本运动方式;阐述了飞行器的姿态描述方法,包括坐标系的建立并比较了欧拉角法、方向余弦法、四元数法的优缺点;建立了四旋翼飞行器动力学模型。之后进行了四旋翼飞行器控制系统总体设计,给出了四旋翼飞行器控制系统结构图,对主控制器、姿态获取模块、电机驱动、无线通信模块进行了分析与设计。根据总体设计要求,完成控制系统硬件设计:对核心元器件进行选型,主控制器使用飞思卡尔公司基于ARM Cortex-M4内核的Kinetis系列芯片MK64FN1M0VLQ12,惯性导航微传感器使用Invensense公司的MPU6050,并给出了电源电路、无刷电机驱动、主控制器模块以及惯性导航微传感器的电路设计,绘制了PCB电路板。根据四旋翼飞行器的动力学模型,使用单级及串级PID控制算法对飞行器进行位置及姿态控制,利用MATLAB/SIMULINK仿真工具对控制算法进行仿真分析,仿真结果表明串级PID姿态控制算法在轨迹跟踪精度和姿态角的稳定性能方面都具有较大的优势。根据嵌入式系统软件的特点要求,给出了系统软件的总体结构框图,分别对系统初始化、姿态信息获取、控制算法实现进行了分析与软件设计,并给出了各模块的软件流程图。最后进行了系统测试与分析。包括各模块软硬件测试,对飞行器样机进行静态数据采集测试与分析,同时进行动态飞行测试,验证了系统设计的可行性以及系统工作的稳定性和可靠性。
[Abstract]:The four-rotor aircraft has four symmetrical propellers, which is a kind of unmanned aerial vehicle with simple structure, flexible control and vertical take-off and landing. Four-rotor aircraft is also a multi-disciplinary integration complex, which provides a good platform for robot field, in robot intelligent control, inertial navigation, path planning. 3D scene reconstruction and multi-aircraft cooperation are of great scientific value. This paper studies the motion control system of four-rotor aircraft. Firstly, the development of four-rotor aircraft is introduced. This paper expounds the research background and significance of the four-rotor aircraft, analyzes the research status and development trend of the four-rotor aircraft at home and abroad, and aims at the structural characteristics of the four-rotor aircraft. The flight principle of the four-rotor aircraft is analyzed, and the basic motion mode of the aircraft is described. The attitude description methods of aircraft are described, including the establishment of coordinate system and the comparison of the advantages and disadvantages of Euler angle method, direction cosine method and quaternion method. The dynamic model of the four-rotor aircraft is established. Then the overall design of the four-rotor aircraft control system is carried out, and the structure diagram of the four-rotor aircraft control system is given. The main controller, attitude acquisition module and motor drive are given. The wireless communication module is analyzed and designed. According to the overall design requirements, the hardware design of the control system is completed. The core components are selected. The main controller uses Freescale's Kinetis family of chips, MK64FN1M0VLQ12, based on the ARM Cortex-M4 kernel. The inertial navigation microsensor uses MPU6050 of Invensense company, and gives the circuit design of power circuit, brushless motor drive, main controller module and inertial navigation micro sensor. The PCB circuit board is drawn. According to the dynamic model of the four-rotor aircraft, the position and attitude of the aircraft are controlled by single-stage and cascade PID control algorithm. The control algorithm is simulated and analyzed by MATLAB/SIMULINK simulation tool. Simulation results show that the cascade PID attitude control algorithm has great advantages in trajectory tracking accuracy and attitude angle stability, according to the characteristics of embedded system software requirements. The overall structure block diagram of the system software is given, and the system initialization, attitude information acquisition, control algorithm implementation are analyzed and software design respectively. Finally, the software flow chart of each module is given. Finally, the system test and analysis are carried out, including the software and hardware testing of each module, the static data acquisition and analysis of the prototype of the aircraft, and the dynamic flight test at the same time. The feasibility of the system design and the stability and reliability of the system are verified.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V249.1
【参考文献】
相关期刊论文 前9条
1 陈增强;孙明玮;杨瑞光;;线性自抗扰控制器的稳定性研究[J];自动化学报;2013年05期
2 甄红涛;齐晓慧;夏明旗;赵红瑞;;四旋翼无人直升机飞行控制技术综述[J];飞行力学;2012年04期
3 成宇翔;张卫平;陈文元;崔峰;刘武;吴校生;;MEMS微陀螺仪研究进展[J];微纳电子技术;2011年05期
4 张荣辉;贾宏光;陈涛;张跃;;基于四元数法的捷联式惯性导航系统的姿态解算[J];光学精密工程;2008年10期
5 殷云华;郑宾;郑浩鑫;;一种基于Matlab的无刷直流电机控制系统建模仿真方法[J];系统仿真学报;2008年02期
6 沙琳;车延博;;无刷直流电动机无位置传感器控制技术[J];机床与液压;2007年07期
7 张立群,李东海,唐多元,薛亚丽;热力系统串级控制PID参数优化研究[J];系统仿真学报;2005年08期
8 宋海龙,杨明,范宇,徐殿国;无刷直流电动机的无位置传感器控制[J];电机与控制学报;2002年03期
9 韩京清;从PID技术到“自抗扰控制”技术[J];控制工程;2002年03期
相关博士学位论文 前2条
1 张洪涛;四旋翼微型飞行器位姿及控制策略的研究[D];哈尔滨工业大学;2014年
2 杨成顺;多旋翼飞行器建模与飞行控制技术研究[D];南京航空航天大学;2013年
相关硕士学位论文 前4条
1 谭广超;四旋翼飞行器姿态控制系统的设计与实现[D];大连理工大学;2013年
2 沈龙;集成电机推进器控制系统的研究与设计[D];哈尔滨工程大学;2012年
3 丛梦苑;基于线性二次调节器的四旋翼飞行器控制系统的设计与研究[D];哈尔滨工程大学;2011年
4 何芝强;PID控制器参数整定方法及其应用研究[D];浙江大学;2005年
,本文编号:1400996
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1400996.html