当前位置:主页 > 科技论文 > 航空航天论文 >

航空发动机转子柔性装配系统平台构型研究

发布时间:2018-01-22 07:15

  本文关键词: 航空发动机 转子装配 柔性工装 刚度、强度分析 运动学仿真 出处:《沈阳航空航天大学》2016年硕士论文 论文类型:学位论文


【摘要】:本文针对航空发动机传统装配方式,装配专用工装数量多,不能满足现代发动机装配中的高精度、高效率等要求,提出了基于自动装配的航空发动机转子柔性装配系统平台。完成了装配系统平台设计、选型、精度分析、静力学分析、运动学建模及正反解验证等研究,该系统平台对解决航空发动机传统装配效率低、无法保证装配质量等问题具有重要意义。本文首先从航空发动机转子类结构特点、装配工艺过程及发动机转子部件的装配共同点出发,结合自动化装配、工装模块化设计等理念,设计了一套适合于不同型号、结构类型相似的柔性装配系统平台,分析了装配系统平台中轴输送平台、盘定位装置的结构特点、工作原理,并重点分析了装配系统中典型定位部件及蜗轮蜗杆的设计和工作原理,通过分析可知,该装配系统平台可以实现发动机转子类结构的数字化装配。其次本文在研究航空发动机转子柔性装配系统平台的基础上,对盘定位装置的定位部分进行了运动学分析,推导了盘定位装置的运动学正反解公式,并对其进行正解仿真和逆解验证;基于轴输送装置的X、Y、Z模块的独立工作原理,建立了误差模型,分析了轴输送装置的精度影响因素,并针对精度要求分析了保证该装配系统精度的方法。同时本文还针对装配系统中盘定位装置的主要承力部件、典型定位部件,利用ANSYS Workbench软件分别对其在不同工况时的装配位置进行了强度分析,同时对轴输送平台中立柱、轴定位部件、蜗轮蜗杆等典型部件进行了刚度、强度分析,从静力学角度验证了装配系统的可行性。最后对盘定位装置的定位机构进行运动学分析,建立了运动学正反解的数学模型,验证了运动学正反解的正确性。同时,对盘定位装置进行了仿真分析,通过分析得出定位臂的驱动滑块及定位平台中心点实际运动轨迹,从而指导盘定位装置的装配工作。本文所设计的航空发动机柔性装配系统平台在航空发动机转子部件数字化装配制造领域具有一定的创新性。
[Abstract]:Aiming at the traditional assembly method of aero-engine, the number of special assembly tools is large, which can not meet the requirements of high precision and high efficiency in modern engine assembly. This paper presents a flexible assembly system platform for aeroengine rotor based on automatic assembly, and completes the design, selection, precision analysis, statics analysis, kinematics modeling and forward and inverse solution verification of the assembly system platform. The system platform is of great significance to solve the problems such as low assembly efficiency and unable to guarantee assembly quality of aeroengine. Firstly, this paper starts with the characteristics of aero-engine rotor structure. Based on the common points of assembly process and engine rotor parts, combined with the concepts of automatic assembly and modular design of tooling, a set of suitable models was designed. The flexible assembly system platform with similar structure type is analyzed. The structure characteristics and working principle of the shaft conveying platform and disk positioning device in the assembly system platform are analyzed. The design and working principle of the typical positioning parts and worm gearing in the assembly system are analyzed. The assembly system platform can realize the digital assembly of engine rotor structure. Secondly, this paper studies the flexible assembly system platform of aero-engine rotor. The kinematics analysis of the positioning part of the disk positioning device is carried out, and the forward and inverse kinematics formula of the disk positioning device is deduced, and the forward solution simulation and inverse solution verification are carried out. Based on the independent working principle of the XFY Z module of the shaft conveyer, the error model is established, and the influence factors of the precision of the shaft conveying device are analyzed. The method to ensure the accuracy of the assembly system is analyzed according to the precision requirements. At the same time, this paper also aims at the main bearing parts of the central disk positioning device of the assembly system, and the typical positioning components. ANSYS Workbench software is used to analyze the strength of the assembly position under different working conditions. At the same time, the column and shaft positioning parts in the shaft conveying platform are analyzed. The stiffness and strength of typical parts such as worm gear and worm are analyzed, and the feasibility of assembly system is verified from the static point of view. Finally, the kinematics analysis of the positioning mechanism of the disc positioning device is carried out. The mathematical model of kinematics forward and inverse solution is established, and the correctness of kinematics forward and inverse solution is verified. At the same time, the disk positioning device is simulated and analyzed. Through the analysis, the driving slider of the positioning arm and the actual motion track of the center point of the positioning platform are obtained. The flexible assembly system platform designed in this paper is innovative in the field of digital assembly manufacturing of aero-engine rotor parts.
【学位授予单位】:沈阳航空航天大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:V263.2

【参考文献】

相关期刊论文 前10条

1 魏小红;谈军;方红文;常智勇;曹浩;邓奇;;航空发动机水平脉动总装生产线规划研究[J];航空制造技术;2015年19期

2 周烁;汪俊熙;刘宜胜;张渝;;大型商用航空发动机整机装配工艺浅析[J];航空制造技术;2014年05期

3 陈雪梅;刘顺涛;;飞机数字化装配技术发展与应用[J];航空制造技术;2014年Z1期

4 辛彦秋;吴斌;苏丹;张贺;;民用航空发动机脉动装配浅析[J];航空制造技术;2013年20期

5 王建华;欧阳佳;陈文亮;;飞机柔性装配工装关键技术及发展趋势[J];航空制造技术;2013年17期

6 李伟楠;朱宁;石宏;杜乐普;;航空发动机盘类转子柔性装配工装构型研究[J];沈阳航空航天大学学报;2013年03期

7 王仲奇;王赢;郭飞燕;康永刚;李西宁;;壁板组件柔性装配工装技术[J];航空制造技术;2013年12期

8 袁立;郭洪杰;;一代飞机 一代技术[J];航空制造技术;2012年Z2期

9 周华锋;张娟;秦秀秀;姚红梅;;柔性工装的结构设计与应用研究[J];中国新技术新产品;2012年15期

10 朱嘉;李醒飞;谭文斌;向红标;陈诚;;基于激光干涉仪的测量机几何误差检定技术[J];机械工程学报;2010年10期



本文编号:1454052

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1454052.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7616c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com