当前位置:主页 > 科技论文 > 航空航天论文 >

压气机叶片振动可靠性分析模型及试验验证

发布时间:2018-02-10 09:39

  本文关键词: 压气机叶片 振动综合可靠性 模糊可靠性 响应面—蒙特卡洛模拟 二次回归正交组合设计 可靠性试验 出处:《南京航空航天大学》2015年硕士论文 论文类型:学位论文


【摘要】:压气机叶片是航空发动机中的重要部件,它能否安全可靠的工作至关重要,受到各种随机因素的影响,它的振动特性和响应往往也会出现随机性,需要采用概率统计的方法对这些随机因素、振动特性和响应进行研究,即压气机叶片的振动可靠性研究;常规的确定性分析以及可靠性分析都是在确定性数学的领域进行的研究,而事物的本身是具有模糊性的,压气机叶片的振动可靠性问题亦然;同时,叶片振动可靠性研究中还存在着缺少试验研究的问题。在这样的背景下,文中开展的研究内容主要有以下几点:首先,系统地总结了叶片振动综合可靠性的研究现状与存在的问题,考虑共振与振幅过载,将压气机叶片振动综合可靠性分为压气机叶片的抗共振可靠性和抗振幅过载可靠性,采用了响应面—蒙特卡洛模拟的方法,建立了压气机叶片振动综合可靠性分析模型与方法,此外,基于模糊可靠性理论,考虑到共振准则的模糊性以及振幅过载准则的模糊性,引入相应类型的隶属函数,建立了叶片振动综合模糊可靠性分析模型。开展了叶片振动可靠性的试验,根据叶片特征尺寸的分布拟合结果以及实际加工的精度限制,并基于二次回归正交组合试验设计法设计了试验点,进行叶片抗共振可靠性试验和叶片抗振幅过载可靠性试验;采用逐步检验并剔除不明显变量的回归拟合技术对试验数据进行处理,得到振动可靠性功能函数的响应面,并对它们进行了蒙特卡洛模拟,获得试验条件下的叶片振动可靠性。开展了模型验证工作:可靠性数值分析结果与试验结果相吻合,验证了本文所建立的可靠性分析模型与方法的有效性;模糊可靠性数值分析结果与试验结果不仅吻合较好,且在考虑共振及振幅过载准则模糊性的情况下,计算精度优于不考虑模糊的情况。
[Abstract]:Compressor blade is an important component in aero-engine. It is very important to work safely and reliably. Due to various random factors, its vibration characteristic and response often appear randomness. The probabilistic statistical method is needed to study these random factors, vibration characteristics and responses, that is, the vibration reliability of compressor blades. The conventional deterministic analysis and reliability analysis are both carried out in the field of deterministic mathematics, and the thing itself is fuzzy, so is the vibration reliability of compressor blade. There are still some problems in the research of blade vibration reliability. Under this background, the main contents of this paper are as follows: first, In this paper, the research status and existing problems of comprehensive reliability of blade vibration are summarized systematically. Considering resonance and amplitude overload, the comprehensive reliability of compressor blade vibration is divided into anti-resonance reliability of compressor blade and anti-amplitude overload reliability. Using the method of response surface-Monte Carlo simulation, the comprehensive reliability analysis model and method of compressor blade vibration are established. In addition, based on fuzzy reliability theory, the fuzziness of resonance criterion and amplitude overload criterion are considered. The fuzzy reliability analysis model of blade vibration is established by introducing the corresponding membership function, and the test of blade vibration reliability is carried out. According to the distribution of blade characteristic size and the precision of actual machining, Based on the design method of quadratic regression orthogonal combination test, the test points were designed, and the reliability tests of blade anti-resonance reliability and blade anti-amplitude overload reliability were carried out. The test data were processed by stepwise test and elimination of unobvious variables, and the response surface of the function function of vibration reliability was obtained, and Monte Carlo simulation was carried out on them. The reliability of the blade vibration under the test condition is obtained. The model verification work is carried out: the reliability numerical analysis results are in agreement with the test results, and the validity of the reliability analysis model and method established in this paper is verified. The results of fuzzy reliability numerical analysis are in good agreement with the experimental results, and the calculation accuracy is better than that without considering the fuzziness of resonance and amplitude overload criterion.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V232.4

【相似文献】

相关期刊论文 前10条

1 冯蕴雯;季佳佳;冯元生;;实用可靠性分析方法及其误差研究[J];民用飞机设计与研究;2008年04期

2 丁明;多区域可靠性分析中的数学模型[J];中国电机工程学报;1987年03期

3 J.S蒋 ,N.H凯木,林玉琛;一种可靠性分析软件的开发[J];质量与可靠性;1990年01期

4 张妃二,袁鸿,郝同壬;断裂与可靠性分析的随机边界元法[J];暨南大学学报(自然科学与医学版);1996年05期

5 李佳,平安,王德俊,卢凤舞;基于材料非稳态疲劳损伤过程的可靠性分析智能化仿真方法[J];机械工程学报;2001年01期

6 李志强;秦沈高速铁路地质情况的可靠性分析[J];铁道建筑;2001年02期

7 张振祥,张t,

本文编号:1500219


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1500219.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户488ad***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com