基于FPGA的多旋翼飞控芯片的测试研究
发布时间:2018-05-12 23:21
本文选题:无人机 + FPGA ; 参考:《哈尔滨工业大学》2015年硕士论文
【摘要】:人们对于旋翼飞行器的研究始于20世纪初,由于工艺水平的限制和相关理论的匮乏并没有取得良好的结果。但是随着微电子工艺水平的进步,相关导航技术理论的成熟,以及无人机的军用、民用和商用等需求的增加,多旋翼无人机的开发和应用显得越来越重要,这不仅具有极大理论研究价值,还能带来可观的商业价值。本文以实验室的无人机芯片开发项目为研究背景,研究多旋翼无人机飞控芯片的原型控制电路,并搭建以FPGA为核心的无人机芯片测试平台,用于开发和测试多旋翼无人机芯片电路的软件模块和硬件模块,并为实现多旋翼无人机的控制芯片奠定一定的基础条件。本文对多旋翼无人机的发展、导航技术的相关知识进行了阐述,详细描述了本文使用的姿态算法和控制算法原理。基于ARM控制器建立了多旋翼无人机的测试环境,进行了算法验证和系统总体结构的验证。其中,主要研究了惯性传感器初始化算法、多旋翼无人机姿态导航算法、PID运动控制算法的实现问题以及系统的总体结构。在ARM平台的搭建工作中,算法测试得到的数据,都为FPGA测试平台中的设计提供了实际的参考数据。最重要的部分是多旋翼无人机飞控芯片电路的设计和测试工作。FPGA硬件板卡是该部分的基础硬件,本文中使用了以Zynq7020为核心的开发板,自行设计了底层的接口板卡,用于连接传感器、供电模块等。FPGA的电路设计部分,主要完成了基于互补滤波的姿态算法电路IP模块、双环PID控制算法电路IP模块以及多旋翼无人机飞控芯片的顶层电路。在对两个主要算法电路模块的测试工作中,使用的参考数据来自ARM控制器平台,并与测试得到的数据进行了对比分析。分析结果可以证明两个主要算法电路和算法原理的一致性。
[Abstract]:Since the beginning of the 20th century, the research on rotor aircraft has not achieved good results due to the limitation of technological level and the lack of relevant theories. However, with the progress of microelectronics technology, the maturity of navigation technology theory and the increasing demand of UAV, such as military, civilian and commercial, the development and application of multi-rotor UAV become more and more important. This not only has the great theoretical research value, but also can bring the considerable commercial value. In this paper, the prototype control circuit of multi-rotor UAV flight control chip is studied based on the research background of UAV chip development project in laboratory, and the test platform of UAV chip based on FPGA is built. The software and hardware modules are used to develop and test the circuit of the multi-rotor UAV chip, and the basic conditions are established for the realization of the control chip of the multi-rotor UAV. In this paper, the development of multi-rotor UAV and the related knowledge of navigation technology are described, and the attitude algorithm and control algorithm principle used in this paper are described in detail. The test environment of multi-rotor UAV is established based on ARM controller, and the algorithm is verified and the overall structure of the system is verified. Among them, the initialization algorithm of inertial sensor, the realization of pid motion control algorithm for multi-rotor UAV attitude navigation algorithm and the overall structure of the system are mainly studied. In the construction of the ARM platform, the data obtained from the algorithm test provide practical reference data for the design of the FPGA test platform. The most important part is the circuit design and test work of the flight control chip of multi-rotor UAV. The FPGA hardware board is the basic hardware of this part. In this paper, the development board with Zynq7020 as the core is used, and the bottom interface board is designed by itself. In the circuit design of connecting sensor, power supply module, etc., the IP module of attitude algorithm based on complementary filter, the IP module of dual-loop PID control algorithm and the top-level circuit of multi-rotor UAV flight control chip are completed. In the testing work of two main arithmetic circuit modules, the reference data is from the ARM controller platform, and compared with the test data. The results of the analysis can prove the consistency of the two main algorithm circuits and the principle of the algorithm.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:V249.1
【参考文献】
相关期刊论文 前3条
1 杨力;张帆;张峰;;四旋翼飞行器动力控制系统研究与设计[J];科学技术与工程;2012年24期
2 万晓凤;康利平;余运俊;林伟财;;互补滤波算法在四旋翼飞行器姿态解算中的应用[J];测控技术;2015年02期
3 王一;赵瑜;宗发保;秦佩;程德福;;航磁矢量测量姿态坐标变换技术研究[J];科学技术与工程;2015年22期
,本文编号:1880602
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/1880602.html