近空间可变翼飞行器多模态切换控制研究
[Abstract]:The near space vehicle (Near Space Vehicle,NSV) works in the near space area of 20~100km. It has the advantages of high efficiency cost ratio, long lag time, high resolution and strong maneuverability. Therefore, the research work of near space vehicle has been attached great importance to by the military powers all over the world. Near-space variable wing aircraft (Near Space Morphing Vehicle,NMV) not only has the characteristics of strong nonlinearity, intense and fast time-varying, strong coupling and serious uncertainty, but also has the problem of small wing expansion and expansion. Therefore, it is very challenging to study the modal control and modal switching control of the near space variable wing aircraft. In this paper, the nonlinear model establishment, flight control under different flight modes and wings, and switching control for different flight modes and wing expansion changes are studied in this paper. The specific research contents are as follows: firstly, according to the data of the model of the near space vehicle published at home and abroad, the nonlinear model of the near space variable wing with the telescopic wing is established according to the characteristics of the variable wing. Because of the complex and changeable characteristics of the flight environment and the differences of different modes of flight missions, the atmospheric environment model and the engine thrust model of different modes are established, and the open-loop characteristics of the aircraft are analyzed. It lays a solid foundation for the research of flight control and switching control of aircraft. Secondly, because of the large flight envelope, the characteristics and control requirements of different flight modes are different. Therefore, based on the mission difference and the small wing state, the modal of the near space variable wing aircraft is divided, and the influence of each modal constraint condition and the small wing state on the aerodynamic force and torque is analyzed. Considering the advantages of sliding mode control (SMC) in dealing with uncertain problems and the disadvantages of buffeting, a double power approach law sliding mode control method is proposed for the equivalent model of feedback linearization, and flight controllers for climbing and cruising modes are designed. In this paper, the stability of the sliding mode control method is proved theoretically, and then the effectiveness and robustness of the method for different flight modes are proved by simulation. Then, considering the sudden change of flight state during mode switching, it is easy to cause instability of the aircraft. Therefore, in view of the switching process of climbing / cruising mode of the near space variable wing aircraft, the control effect of direct switching is analyzed, and the necessity of designing switching control law is explained. Considering the robustness of the sliding mode control method, a sliding mode switching control algorithm based on the inertial link is proposed. The advantages and disadvantages of this method and the traditional inertial link switching control method are analyzed by numerical simulation. Finally, in view of the particularity of the research object, the influence of different states on flight control is analyzed, and the control system under different wing states is studied. Because the aerodynamic parameters change due to the change of the wing state, the double power approach law sliding mode switching control algorithm based on the inertia link is applied to the transfer process of the wing retraction / extension. Numerical simulation shows that the method has good control effect and good robustness. To sum up, a new switching control algorithm is proposed in this paper, which focuses on the flight control, flight mode switching and flanking switching of the near-space variable wing aircraft. The mode switching process is stable and smooth.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:V249.1
【相似文献】
相关期刊论文 前10条
1 翟军勇;;基于能量守恒的桥吊防c谢豢刂芠J];东南大学学报(自然科学版);2011年S1期
2 薛振框,李少远;基于模型有效匹配的多模型切换控制[J];上海交通大学学报;2005年03期
3 赵景波;周冰;李秀莲;贝绍轶;;电动化底盘动力转向系统多工况切换控制策略及性能试验[J];电机与控制学报;2013年11期
4 翟军勇;费树岷;;集装箱桥吊防摇切换控制研究[J];电机与控制学报;2009年06期
5 史继忠;分子筛吸附器的自动切换控制系统[J];深冷技术;2003年02期
6 潘金凤;赵建立;付世华;;逻辑切换控制网络的可控性和稳定性[J];山东大学学报(工学版);2013年04期
7 刘芬;王仁明;李寒生;曾晓;;统一混沌系统的脉冲切换控制[J];中原工学院学报;2006年02期
8 翟军勇;费树岷;达飞鹏;;基于神经网络多模型自适应切换控制研究[J];中国电机工程学报;2005年24期
9 郑梓荣;变频与工频切换控制在大厦供水中的应用[J];广东建材;2005年10期
10 林孝工;谢业海;赵大威;徐树生;;基于滞后-停留时间切换控制的输入受限系统[J];哈尔滨工程大学学报;2012年06期
相关会议论文 前4条
1 邢媛;刘金福;于达仁;;基于切换控制的舰船增压锅炉燃烧控制系统设计[A];2012电站自动化信息化学术和技术交流会议论文集[C];2012年
2 张艳霞;郭雷;;基于多模型的随机自适应切换控制[A];第二十届中国控制会议论文集(上)[C];2001年
3 陈超;于达仁;鲍文;赵军;;基于多Lyapunov函数方法的航空发动机安全保护切换控制[A];第二十九届中国控制会议论文集[C];2010年
4 顾颖兰;;冷轧机组柔性切换控制实现方法[A];中国计量协会冶金分会2014年会暨能源计量与绿色冶金论坛论文集[C];2014年
相关博士学位论文 前2条
1 高锋;汽车纵向运动多模型分层切换控制[D];清华大学;2006年
2 衣丽葵;DC-DC变换器的非线性与切换控制方法的研究[D];东北大学;2012年
相关硕士学位论文 前10条
1 李青峰;Femtocell网络中的切换控制研究[D];西南交通大学;2016年
2 汪桐萱;船舶电力推进系统不同海况下控制策略的研究[D];哈尔滨工业大学;2016年
3 顾臣风;近空间可变翼飞行器多模态切换控制研究[D];南京航空航天大学;2016年
4 朱超;基于速度阻尼方法的力位切换控制与实现[D];哈尔滨工业大学;2013年
5 付俊;非线性级联系统的鲁棒不变切换控制[D];东北大学;2005年
6 彭豪;基于模型库切换控制方法的带材纠偏系统研究[D];湘潭大学;2013年
7 赵春浩;涡扇发动机的建模与切换控制[D];大连理工大学;2015年
8 徐松;基于互联阻尼配置的切换控制及在PMSM模型中的应用[D];中南大学;2013年
9 王彦婷;非线性自适应切换控制及其在风力发电中的应用[D];东北大学;2011年
10 戴旭飞;宏微定位平台的磁滞补偿模型与切换控制研究[D];哈尔滨工业大学;2016年
,本文编号:2264088
本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/2264088.html