当前位置:主页 > 科技论文 > 航空航天论文 >

无人机INS/GPS组合导航算法研究

发布时间:2021-07-11 12:56
  无人机是一种由动力驱动、机上无人驾驶、可重复使用的航空飞行器,在军事和民用领域都得到了广泛的应用。在近年来的几次局部战争中,无人机有效的执行了包括照相侦查、信号情报搜索、战场损伤评估在内的多种军事任务,作为军队战斗力的倍增器受到各国军方的普遍关注,并成为科学研究的热点。在美军的网络中心战理论中,无人机以其良好的战场感知能力成为了重要环节。在未来无人机的发展在不断追求高性能的过程中,对导航技术的要求也必将越来越高,不断追求精度更高、效率更高、准确性及鲁棒性更高的导航算法,以满足未来无人机发展的需要。由于惯性导航系统(INS)导航输出数据平稳,短期稳定性好,具有极强的自主性,使其成为了无人机导航领域中最为核心的导航方式,但是惯导系统的误差会随时间累积。卫星导航系统易受环境和载体运动影响而丢失信号,但长期稳定性好,是目前最为常用的用来辅助惯性导航的辅助系统。本文利用INS和GPS进行组合导航,既能够利用惯性导航的自身优势,又能通过GPS避免惯性导航中系统误差与随机误差带来的导航参数误差。为进行组合导航系统建模,本文首先定义了导航坐标系,建立了惯性导航系统的数学模型,给出了比力和角速度的数学模... 

【文章来源】:哈尔滨工业大学黑龙江省 211工程院校 985工程院校

【文章页数】:68 页

【学位级别】:硕士

【文章目录】:
Abstract
摘要
Acronyms
Chapter 1. Introduction
    1.1. Background Introduction
        1.1.1. Components of UAV
        1.1.2. Instruments and Sensors in UAVS
        1.1.3. Used of INS/GPS in UAVS
    1.2. Motivation
    1.3. Research Contribution
    1.4. Thesis Overview
Chapter 2. Literature review
    2.1. Overview
    2.2. Inertial Navigation (INS)
        2.2.1. Principle of inertial navigation (INS)
        2.2.2. Function of INS
        2.2.3. Advantages of INS
        2.2.4. Disadvantages of INS
    2.3. GPS
        2.3.1. Basic Concept of GPS
        2.3.2. Function of GPS
        2.3.3. Using GPS for Tracking and its Applications
        2.3.4. GPS Strengths and Weaknesses
    2.4. INS/GPS
        2.4.1. INS/GPS Method
        2.4.2. Applications
    2.5. Kalman Filter
    2.6. Extended Kalman Filter
    2.7. Cubature Kalman Filter & Huber based high Degree Cubature Kalman Filter
Chapter 3. Research Methodology
    3.1. Overview
    3.2. Inertial Navigation System (INS)
    3.3. Global Positioning System (GPS) Principle of GPS:
    3.4. Extended Kalman filter (EKF)
    3.5. Cubature Kalman Filter & Huber Based Cubature Kalman Filter
        3.5.1. Time Update Equations
        3.5.2. Huber's Technique used for Measurement Update
Chapter 4. Results and Discussion
    4.1. Overview
    4.2. Simulation results
        4.2.1. Inertial Navigation system results:
        4.2.2. GPS Simulation results:
        4.2.3. Extended Kalman Filter
        4.2.4. Cubature Kalman filter
        4.2.5. Huber based high Degree Cubature Kalman Filter
    4.3. Performance analysis
        4.3.1. Comparison of Velocity error
        4.3.2. Comparison of Position error
Conclusion
References
Acknowledgements
Resume



本文编号:3278138

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/hangkongsky/3278138.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dcb91***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com