基于高光谱的环首都地区数字高程模型与可吸入颗粒物的空间相关性研究
发布时间:2018-01-22 21:16
本文关键词: 高光谱 环首都地区 数字高程模型 可吸入颗粒物 空间相关性 出处:《光谱学与光谱分析》2016年09期 论文类型:期刊论文
【摘要】:空气中可吸入颗粒物浓度的增加与众多综合因素相关,其空间分散程度与高程DEM间也有一定的相关性。为了研究雾霾的污染与高度的空间相关关系,以环首都地区100km范围内为研究对象,利用矩形格网尺度法对所研究区域进行不同边长及不同尺度的格网划分,通过无人机获取可见光影像数据和高光谱POS信息数据,对所研究区内的空气污染因子和高程因子进行提取和整合。同时利用地统计学GS+软件的克里格插值法对所提取的变量数据进行空间相关性研究,并利用MODIS遥感影像数据和无人机获取的POS数据与实地调查相结合的方法对地形和环境数据进行非线性回归拟合分析。计算在不同格网尺度下环首都地区空气中的可吸入颗粒物及高程因子的空间相关效应的影响变程,建立二者间的空间相关性优化模型,从而确定可吸入颗粒物浓度随着高程变化的整体趋势。结果表明:高程DEM与空气污染指数API的最大相关影响距离为14.74km,且随着样本点间的距离增大,DEM的空间自相关性呈现逐渐减弱的规律,即可吸入颗粒物浓度随着高程的增加而减小的整体趋势。同时,建立了高程DEM与环境间的空间相关性模型,该模型符合地统计学的高斯球状模型,相关系数r均高于90%,模型拟合度较高。试验为日后相关部门控制空气污染指数随着高度的变化选择不同树种进行绿化提供了一定的理论和实践指导依据。
[Abstract]:In order to study the spatial correlation between the pollution of haze and the height of haze, the increase of the concentration of respirable particulates in the air is related to many comprehensive factors, and the degree of spatial dispersion is also related to the elevation of DEM. Taking the 100 km area around the capital as the research object, the rectangular grid scale method is used to divide the grid of the studied area with different side length and different scale. The visible light image data and hyperspectral POS information data are obtained by UAV. The air pollution factors and elevation factors in the study area were extracted and integrated. At the same time, the spatial correlation of the extracted variable data was studied by using the Kriging interpolation method of geostatistics software GS. The nonlinear regression fitting analysis of terrain and environment data is carried out by using MODIS remote sensing image data, POS data obtained by UAV and field survey. The calculation is carried out on different grid scales around the capital city. Spatial correlation effects of inhalable particulate matter and elevation factors in regional air. The optimization model of spatial correlation between them is established. The results showed that the maximum correlation distance between elevation DEM and air pollution index (API) was 14.74 km. The spatial autocorrelation of Dem decreases gradually with the increase of the distance between the sample points, that is, the concentration of inhaled particulates decreases with the increase of height. At the same time. The spatial correlation model between elevation DEM and environment was established. The model was consistent with Gao Si's spherical model of geostatistics, and the correlation coefficient r was higher than 90%. The experiment provides a theoretical and practical basis for the control of air pollution index with the change of height in different tree species for greening.
【作者单位】: 中国人民武装警察部队警种学院;
【基金】:国家科技支撑计划项目(2012BAH34B01) 单兵便携应急侦测评估无人机系统研究项目(WK2016-Y7)资助
【分类号】:X87;X513
【正文快照】: 引言随着经济的飞速发展,环首都地区的环境污染问题也越来越严重,尤其是自2008年奥运会之后的空气污染,越来越受到国内外各界环保人士的重视。对空气污染和空气质量评价早在很多年前就有深入研究,早在1998年,朱传凤等就提出了空气污染指数(air population index,API)的概念、
【相似文献】
相关期刊论文 前10条
1 梁元凤,刘从容;沈阳市环境空气中可吸入颗粒物污染现状分析[J];环境保护科学;2003年02期
2 唐桂林,赵家玉,杜志明;烟花燃放产生的可吸入颗粒物研究简介[J];火工品;2003年04期
3 董雪玲;大气可吸入颗粒物对环境和人体健康的危害[J];资源·产业;2004年05期
4 刘泽常,王志强,李敏,张桂芹;大气可吸入颗粒物研究进展[J];山东科技大学学报(自然科学版);2004年04期
5 吕建q,
本文编号:1455747
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1455747.html
最近更新
教材专著