当前位置:主页 > 科技论文 > 环境工程论文 >

SND与反硝化除磷耦合过程碳源利用及微生物作用机制研究

发布时间:2018-06-29 06:26

  本文选题:同步硝化反硝化 + 反硝化除磷 ; 参考:《东南大学》2015年硕士论文


【摘要】:针对我国生活污水生物脱氮除磷过程中存在碳源不足、曝气能耗高等问题,本文基于SBR反应器,采用新型脱氮除磷运行方式:进水→厌氧搅拌→低氧曝气→缺氧搅拌→好氧曝气→沉淀→排泥出水,在厌氧段进行释磷,低氧曝气段实现SND,缺氧段进行反硝化除磷,好氧段进一步硝化及吸磷,在单泥系统中实现SND与反硝化除磷过程的耦合。本文在分别完成同步硝化反硝化污泥和反硝化除磷污泥驯化后,混合两种污泥,在SBR反应器内实现SND与反硝化除磷的耦合,MLSS为3800mg/L~4000mg/L, SRT为20d左右,厌氧段、低氧段、缺氧段、好氧段的运行时间分别为2h、3h、3.5h、1n,常温条件下,当乙酸钠为单一碳源,进水COD为150m∥L左右、COD/TN/P为25:5:1、pH为7.8时,系统的TN和TP去除率分别达到66.7%和96.1%。通过低氧段的SND过程和缺氧段的反硝化除磷过程去除的TN分别为39.8%和17.1%,通过低氧段吸磷和缺氧吸磷去除的TP分别为68.4%和22.7%。最终出水COD、氨氮、硝态氮、亚硝态氮、TN、tp浓度分别为10mg/L、2.16mg/L、 11.28mg/L.0.03mg/L、13.47mg/L、0.83mg/L。耦合-SBR系统内厌氧释磷量及低氧吸磷量随初始pH值的升高而增加。初始pH对厌氧释磷过程产生影响的原因是进水pH值影响厌氧段糖原代谢量和腺苷酸激酶(Adenylate kinase, ADK)与多聚磷酸盐激酶(Polyphosphate kinase, PPK)活性。细胞合成能力随初始pH的升高而增强,且较高的初始pH值下有较高的硝化活性和反硝化活性。ADK和PPK活性随着pH的增加而增加。耦合系统除磷率随着进水丙酸钠/乙酸钠比例的提高而升高,但丙酸钠/乙酸钠比例对TN去除率的影响不大。脱氢酶(Dehydrogenase, DH). PPK和ADK酶活性随着丙酸钠/乙酸钠比例的增加而增加。以丙酸钠为唯一碳源的耦合系统持续运行20天,出水COD、TN、TP和氨氮浓度分别为10mg/L、11.39mg/L、0.51mg/L及0.02mg/L。对于低C/N值生活污水,为有效的利用碳源以及通过SND过程与反硝化除磷过程的耦合以实现氮磷的有效去除,可通过调整阶段时间控制外碳源主要分配在厌氧段和低氧段被去除,且在低氧段和缺氧段有充足的内碳源。稳定运行后的耦合-SBR系统内PAO、AOB、NOB和dentrifier的相对丰度分别为41±11%,10±4%,13±9%和16±12%。进水碳源种类和初始pH对系统中的GAOs和PAOs的竞争产生影响,较高的进水pH有利于1'AOs竞争GAOs,随着丙酸钠在进水中比例的提高,PAOs的相对数量逐渐增加,但AOB、NOB和dentrifier的相对数量与碳源种类没有相关性。耦合-SBR系统通过应用反硝化除磷和SND技术提高了氮磷的去除效果,富集并稳定脱氮除磷功能菌群,缓解了反硝化与厌氧释磷过程对碳源的竞争,适宜处理低C/N值生活污水,并降低了需氧量,是一种可持续的生活污水脱氮除磷工艺。
[Abstract]:In order to solve the problems of insufficient carbon source and high energy consumption of aeration in the process of biological denitrification and phosphorus removal of domestic sewage, this paper is based on SBR reactor. A new operation method of nitrogen and phosphorus removal was adopted: anaerobic stirring in influent and anaerobic mixing in low oxygen, anoxic mixing and aerobic aeration to precipitate sludge discharge, phosphorus release in anaerobic stage, SND in low oxygen aeration stage and denitrifying phosphorus removal in anoxic stage. Further nitrification and phosphorus absorption in aerobic stage can realize the coupling of SND and denitrifying phosphorus removal process in a single mud system. After acclimation of simultaneous nitrification and denitrification sludge and denitrifying phosphorus removal sludge, two kinds of sludge were mixed, and the coupling of SND and denitrifying phosphorus removal was realized in SBR reactor. The MLSs of SND and denitrification phosphorus removal were 3800mg / L / L = 4 000 mg / L, SRT was about 20 d, anaerobic stage, low oxygen stage and anoxic stage. The operating time of aerobic stage is 2 h ~ 3 h ~ (3.5) h ~ (-1). When sodium acetate is a single carbon source and influent COD is 150 m / L or so, the removal rate of TN and TP is 66.7% and 96.1%, respectively, when COD / TNP is 25: 5: 1 / 1 and pH is 7.8. The TN removal rates of SND process and denitrification phosphorus removal process were 39.8% and 17.1%, respectively, and the TP removal through hypoxia stage and hypoxia stage were 68.4% and 22.7%, respectively. The final effluent concentration of COD, NH3-N, NO3-N and TNT _ p were 10 mg / L ~ (2.16 mg / L), 11.28 mg / L ~ (0.03) mg / L ~ (13. 47) mg / L ~ (-1) ~ 0.83 mg 路L ~ (-1) ~ (-1), respectively. The anaerobic phosphorus release and low oxygen phosphorus uptake increased with the increase of initial pH value in coupled SBR system. The effect of initial pH on anaerobic phosphorus release was due to the effect of influent pH on the metabolism of glycogen and the activities of adenylate kinase (Adenylate kinase,) and polyphosphate kinase (PPK). The cell synthesis ability increased with the increase of initial pH, and the nitrification activity, denitrification activity. ADK and PPK activity increased with the increase of pH value. The phosphorus removal rate of the coupling system increased with the increase of the ratio of sodium propionate to sodium acetate, but the ratio of sodium propionate to sodium acetate had little effect on the removal rate of TN. Dehydrogenase (DH). The activities of PPK and ADK increased with the increase of the ratio of sodium propionate to sodium acetate. With sodium propionate as the sole carbon source, the concentration of TNTP and NH3-N in effluent was 10 mg / L 11.39 mg / L 0.51 mg / L and 0.02 mg / L respectively. For domestic sewage with low C / N value, in order to utilize carbon source effectively and to realize effective nitrogen and phosphorus removal by coupling SND process with denitrifying phosphorus removal process, external carbon sources can be controlled to be removed mainly in anaerobic and low oxygen stages by adjusting stage time. And there are sufficient internal carbon sources in hypoxia and anoxia. The relative abundance of dentrifier and PAO AOB in the coupled SBR system was 41 卤1110 卤4 10 卤9% and 16 卤12%, respectively. The competition between GAOs and PAOs in the system was affected by the type of carbon source and the initial pH. The higher influent pH was favorable to the competition of GAOs. with the increase of the ratio of sodium propionate in the influent, the relative quantity of PAOs increased gradually. However, there was no correlation between the relative number of AOB and dentrifier and the carbon source species. By using denitrifying phosphorus removal and SND technology, coupled SBR system can improve the removal efficiency of nitrogen and phosphorus, enrich and stabilize the functional flora of denitrification and phosphorus removal, alleviate the competition of carbon source in denitrification and anaerobic phosphorus release process, and is suitable for treating domestic sewage with low C / N value. It is a sustainable nitrogen and phosphorus removal process for domestic sewage.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X703

【相似文献】

相关期刊论文 前10条

1 万金保;王建永;;反硝化除磷理论及运用现状[J];水处理技术;2008年03期

2 王德兴;孙立柱;沈耀良;;废水反硝化除磷影响因素的分析[J];环境科技;2008年05期

3 张红;张可方;张朝升;荣宏伟;;反硝化除磷菌的培养及驯化[J];广东化工;2009年06期

4 张少辉;姜应和;;短程反硝化除磷技术研究[J];安徽农业科学;2011年20期

5 王亚宜,彭永臻,王淑莹,李勇智,潘绵立;反硝化除磷理论、工艺及影响因素[J];中国给水排水;2003年01期

6 刘丽玲,操家顺,林涛;脱氮除磷新途径——反硝化除磷[J];化工设计;2004年02期

7 张洁;黄仁刚;常建伟;张魁峰;王海燕;;亚硝酸盐等因素对反硝化除磷的影响及对策[J];江苏环境科技;2005年S1期

8 王春丽;马放;米海蓉;刘慧;;反硝化除磷系统的启动及其稳定性研究[J];给水排水;2006年S1期

9 张杰;李小明;杨麒;陈瑶;;反硝化除磷技术及其实现新途径[J];工业用水与废水;2007年03期

10 刘建广;宋武昌;王珊珊;;反硝化除磷菌驯化富集方式的探讨[J];环境污染与防治;2008年12期

相关会议论文 前1条

1 朱光灿;王佳;雷晓芬;余冉;吕锡武;;耦合SND与反硝化除磷的SBR系统运行影响因素研究[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年

相关博士学位论文 前7条

1 李微;短程反硝化除磷脱氮工艺与微生物特性研究[D];东北大学;2013年

2 吕小梅;反硝化除磷菌群结构与工艺调控策略[D];哈尔滨工业大学;2014年

3 石玉明;A~2SBR反硝化除磷工艺效能及微生物生理生态特征研究[D];哈尔滨工业大学;2009年

4 刘洪波;低浓度城市污水强化反硝化除磷[D];同济大学;2007年

5 王亚宜;反硝化除磷脱氮机理及工艺研究[D];哈尔滨工业大学;2004年

6 苗志加;强化生物除磷系统聚磷菌的富集反硝化除磷特性[D];北京工业大学;2013年

7 李相昆;反硝化除磷工艺与微生物学研究[D];哈尔滨工业大学;2006年

相关硕士学位论文 前10条

1 康婷婷;猪场沼液自养脱氮耦合反硝化除磷技术研究[D];浙江大学;2016年

2 邹杰;短程反硝化除磷菌培养及分离的实验研究[D];东北大学;2014年

3 李平;序批式移动床生物膜反应器强化反硝化除磷处理城镇生活污水[D];吉林大学;2016年

4 杨胤;改良A~2/O工艺反硝化除磷性能的中试研究[D];华南理工大学;2016年

5 徐立然;SND与反硝化除磷耦合过程碳源利用及微生物作用机制研究[D];东南大学;2015年

6 黄毅;间歇式短程反硝化除磷基础研究[D];武汉理工大学;2009年

7 汪永明;连续式短程反硝化除磷基础研究[D];武汉理工大学;2010年

8 丁彩娟;反硝化除磷系统基质转化和生物特性初探[D];重庆大学;2005年

9 张红;应用反硝化除磷技术处理广州城市污水的试验研究[D];广州大学;2007年

10 占茹;双泥折流板反硝化除磷系统中反硝化除磷微生物的荧光原位杂交检测研究[D];苏州科技学院;2011年



本文编号:2081209

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2081209.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户f84b6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com