失效汽车催化剂中铂族金属浸出工艺优化及浸出动力学研究
[Abstract]:The most effective way to control automobile exhaust is to install the catalyst for purifying the automobile tail gas with the active component of the platinum group metal. When the car runs for a certain time and mileage, the catalyst of automobile exhaust purification loses its catalytic activity. The resulting waste is the two most important resource of the platinum group metal. The extraction process of the present report is reported. There are 3 main types of fire method, wet method and fire wet connection. These methods either have the disadvantages of high equipment requirements, large investment, high production cost, low extraction efficiency, serious environmental pollution and so on. It is urgent to develop a simple, less polluted and high extraction rate of platinum group metal. On the basis of literature, the platinum palladium rhodium 3 kinds of platinum group metals are on the basis of literature The stable morphology in the chloride solution system is studied by thermodynamic analysis. The results show that when the acidity of pH is about -1 and the electrode potential is increased to 700mV, the platinum is dissolved, the electrode potential is 500mv, the rhodium is only 420mv, and the acidity of the solution and the concentration of the chlorine ion of the coordination agent are beneficial to the leaching of the platinum group metal. The leaching of platinum, palladium and rhodium in automobile catalyst by HCl-H_2SO_4-NaClO_3 system was proved theoretically. The wet extraction process of platinum group metal recovered from the failure vehicle catalyst was studied by experiment. The results of single factor experiment showed that the leaching rate of platinum group metal was with the leaching temperature, the acidity of the leaching solution and the proportion of hydrochloric acid. The optimum extraction conditions are: initial acidity [H+]=9mol L-1, hydrochloric acid sulphuric acid ratio 4? 1, sodium chlorate of oxidizing agent 5%, leaching temperature of 105, stirring rate of 250rpm, leaching time 90min, liquid solid. The leaching rate of platinum, palladium and rhodium was 90%, 90%, 96.3% and 81.2%. respectively compared to 5? 1. under the above conditions. The leaching conditions were optimized by orthogonal experiment on the basis of single factor experiments. The orthogonal experiment was used to design the three level Four Factor orthogonal experiment on the basis of L9 (34) orthogonal table. Then the extreme difference was carried out on the basis of orthogonal experiment. The influencing factors of platinum leaching rate are in turn, the temperature of the acid leaching time of hydrochloric acid is in turn; the factors affecting the palladium leaching rate are in turn, the ratio of acid temperature to hydrochloric acid sulfuric acid leaching time, and the factor of rhodium leaching rate in turn, when the acidity hydrochloric acid sulfuric acid ratio is leached by temperature. The optimum process conditions are: initial acidity [H+]11mol L-1, leaching temperature 105 C, hydrochloric acid sulphuric acid ratio 3? 1, leaching time 90min. under the above conditions for two consecutive leaching of platinum, palladium, rhodium leaching rate is 92.27%, 96.69% and 82.98%. phase optimization process conditions, platinum, rhodium leaching rate are all At the same time, through the modern characterization means such as XRD and SEM, it is proved that the low leaching rate of the platinum group metal by wet leaching is the stable structure of the magnesium cordierite in the failure vehicle catalyst and the package of the platinum group metal. Based on the above technological conditions, the characteristics of the study on the kinetics of the bonding liquid solid reaction to the failure vehicle The leaching kinetics of platinum and rhodium was studied in the catalyst. The leaching kinetics of platinum and rhodium in the HCl-H_2SO_4-NaClO_3 body system was studied by investigating the liquid solid ratio, the dosage of sodium chlorate, the temperature, the initial hydrogen ion concentration, the initial chlorine ion concentration on the platinum and rhodium leaching rate. The leaching of platinum and rhodium in the vehicle catalyst follows the "unreacted nuclear reduction" model and is controlled by chemical reaction. Increasing the reaction temperature, the initial hydrogen ion concentration and the initial chloride concentration can increase the leaching rate of platinum, rhodium, accelerate the leaching rate of platinum, rhodium, and the amount of liquid to solid ratio and the amount of oxidant NaClO_3 have no significant effect on the leaching rate; The activation energy of platinum leaching reaction is 45.34kJ mol-1, hydrogen ion reaction series is 1.712, chlorine ion reaction series is 0.613, rhodium leaching activation energy is 66.719 kJ. Mol-1, higher than platinum activation energy, hard leaching, hydrogen ion reaction series 0.779, and chlorine ion reaction series 0.296. against low concentration platinum palladium rhodium leaching solution. Hydrazine hydrate and sodium borohydride have been reduced and enriched. The optimum condition for hydrazine hydrate is that the amount of hydrazine hydrate is 8% of the raw material, the acidity of the raw material is about 1.2mol L-1, the reaction temperature is about 70 C, the reaction time is 10min. empirical platinum, the reduction rate of palladium and rhodium is 98.41%, 99.84%, 95.55, respectively. %, the optimum condition for the reductive leaching solution of sodium borohydride is that the reaction temperature is 40 C, the acidity [H+] in the raw material is close to 0mol. L-1, the sodium borohydride is added to 5% of the raw material, and the reaction time 10min. is 99.47%, 99.67%, 99.32%, respectively, with the reduction rate of platinum, palladium and rhodium, under the optimized process conditions, and the reduction effect is better than hydrazine, and the platinum group metal in the reductive concentration is reduced. High grade, easy to dissolve reengineering solution.
【学位授予单位】:昆明贵金属研究所
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X734.2;TF83
【相似文献】
相关期刊论文 前10条
1 刘时杰;铂族金属提取冶金技术发展[J];有色冶炼;2000年06期
2 朱峰 ,李宝成,张杰,朱波,朱涛;铂族金属的发展与展望[J];世界有色金属;2002年09期
3 郑学军;南非铂族金属产量增长[J];稀有金属快报;2003年01期
4 靳湘云;德国铂族金属回收现状[J];中国金属通报;2005年31期
5 王婷;;南非和苏联铂族金属生产的某些情况[J];矿产保护与利用;1981年01期
6 谭庆麟;阙振寰;;铂族金属的性质、用途和展望[J];科学通报;1964年03期
7 ;1974年国外铂族金属生产概况[J];有色冶炼;1976年01期
8 晓宇;世界铂族金属生产概况[J];有色冶炼;1977年02期
9 邹愉;南非回收铂族金属的新方法[J];有色冶炼;1977年02期
10 晓宇;铂族金属的精炼[J];有色冶炼;1977年02期
相关会议论文 前5条
1 李富海;丁作铭;林铭章;;光化学方法从模拟高放废液中分离铂族金属——液相中铑(Ⅲ)的紫外光还原[A];第十三届全国核化学与放射化学学术研讨会论文摘要集[C];2014年
2 田娜;周志有;黄志忠;朱天玮;孙世刚;;铂族金属纳米晶体催化剂的电化学形状控制合成[A];中国化学会第26届学术年会纳米化学分会场论文集[C];2008年
3 刘时杰;;中国铂族金属提取冶金技术的发展[A];中国有色金属学会第三届学术会议论文集——战略研究综述部分[C];1997年
4 田娜;邓宇甲;肖晶;刘海霞;周志有;孙世刚;;高指数晶面结构铂族金属合金纳米催化剂的制备及性能研究[A];中国化学会第28届学术年会第10分会场摘要集[C];2012年
5 姜艳霞;陈明晖;张斌伟;孙世刚;;负载型铂族金属催化剂的尺寸控制和形状控制合成及其性能[A];中国化学会第28届学术年会第4分会场摘要集[C];2012年
相关重要报纸文章 前10条
1 张平安 刘树臣 王淑玲 崔荣国;铂族金属:高需求催生勘查热[N];地质勘查导报;2008年
2 ;加国际镍公司增产铂族金属[N];中国矿业报;2003年
3 记者 李林旭;机构纷纷看好铂族金属后市[N];中国黄金报;2014年
4 记者 郭曼;云企抢占铂族金属循环产业先机[N];昆明日报;2014年
5 李红超;汇丰银行看好中长期铂族金属价格[N];中国黄金报;2014年
6 ;普拉特敏2010年预计生产铂族金属16万盎司[N];中国黄金报;2010年
7 吴海瀛;工业需求及供应问题支持国际铂市[N];中国有色金属报;2011年
8 记者 高一 编辑 祝建华;贵研铂业打造我国最大铂族金属再利用基地[N];上海证券报;2010年
9 吴海赢;铂族金属投资需求强劲[N];中国有色金属报;2006年
10 树其;铑价飞起探缘[N];中国有色金属报;2000年
相关博士学位论文 前1条
1 黄昆;加压氰化法提取铂族金属新工艺研究[D];昆明理工大学;2005年
相关硕士学位论文 前3条
1 胡定益;失效汽车催化剂中铂族金属浸出工艺优化及浸出动力学研究[D];昆明贵金属研究所;2015年
2 董珊;废催化剂中铂族金属提取的离子交换技术研究[D];河北大学;2012年
3 刘少轻;电感耦合等离子体质谱在贵金属分析中的应用研究[D];首都师范大学;2008年
,本文编号:2171771
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2171771.html